Freezing tolerance and avoidance were studied in several different sized species of the tropical high Andes (4200 m) to determine whether there was a relationship between plant height and cold resistance mechanisms. Freezing injury and supercooling capacity were determined in ground level plants (i.e. cushions, small rosettes and a perennial herb), intermediate height plants (shrubs and perennial herbs) and arborescent forms (i.e. giant rosettes and small trees). All ground-level plants showed tolerance as the main mechanism of resistance to cold temperatures. Arborescent forms showed avoidance mechanisms mainly through supercooling, while intermediate plants exhibited both. Insulation mechanisms to avoid low temperatures were present in the two extreme life-forms. We suggest that a combination of freezing tolerance and avoidance by insulation is least expensive and is a more secure mechanism for high tropical mountain plants than supercooling alone.
The gas exchange and water relations of the hemiparasite Pthirusa maritima and two its mangrove host species, Conocarpus erectus and Coccoloba uvifera, were studied in an intertidal zone of the Venezuelan coast. Carbon uptake and transpiration, leaf osmotic and total water potential, as well as nutrient content in the xylem sap and leaves of mistletoes and hosts were followed through the dry and wet season. In addition, carbon isotope ratios of leaf tissue were measured to further evaluate water use efficiency. Under similar light and humidity conditions, mistletoes had higher transpiration rates, lower leaf water potentials, and lower water use efficiencies than their hosts. Potassium content was much higher in mistletoes than in host leaves, but mineral nutrient content in the xylem sap of mistletoes was relatively low. The resistance of the liquid pathway from the soil to the leaf surface of mistletoes was larger than the total liquid flow resistance of host plants. Differences in the daily cycles of osmotic potential of the xylem sap also indicate the existence of a high resistance pathway along the vascular connection between the parasite pathway along the vascular connection between the parasite and its host. P. maritima mistletoes adjust to the different physiological characteristics of the host species which it parasitizes, thus ensuring an adequate water and carbon balance.
Frost avoidance mechanisms were studied in Espeletia spicata and Espeletia timotensis, two Andean giant rosette species. The daily courses of soil, air and tissue temperatures were measured at a site at circa 4000 m. Only the leaves were exposed to subzero temperatures; the apical bud and stem pith tissues were insulated by surrounding tissues. The leaf tissues avoided freezing by supercooling rather than by undergoing active osmotic changes. The temperatures at which ice formed in the tissues (the supercooling points) coincided with injury temperatures indicating that Espeletia tissue does not tolerate any kind of ice formation. For insulated tissue (apical bud, stem pith, roots) the supercooling point was around ‐ 5°C coinciding with the injury temperature. Supercooling points of about –13 to ‐ 16°C were observed for leaves. These results contrast with those reported for Afroalpine giant rosettes which tolerate extracellular freezing. The significance of different adaptive responses of giant rosettes to similar cold tropical environments is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.