Spin torque oscillators with nanoscale electrical contacts are able to produce coherent spin waves in extended magnetic films, and offer an attractive combination of electrical and magnetic field control, broadband operation, fast spin-wave frequency modulation, and the possibility of synchronizing multiple spin-wave injection sites. However, many potential applications rely on propagating (as opposed to localized) spin waves, and direct evidence for propagation has been lacking. Here, we directly observe a propagating spin wave launched from a spin torque oscillator with a nanoscale electrical contact into an extended Permalloy (nickel iron) film through the spin transfer torque effect. The data, obtained by wave-vector-resolved micro-focused Brillouin light scattering, show that spin waves with tunable frequencies can propagate for several micrometres. Micromagnetic simulations provide the theoretical support to quantitatively reproduce the results.
Magnonics is a budding research field in nanomagnetism and nanoscience that addresses the use of spin waves (magnons) to transmit, store, and process information. The rapid advancements of this field during last one decade in terms of upsurge in research papers, review articles, citations, proposals of devices as well as introduction of new sub-topics prompted us to present the first Roadmap on Magnonics. This a collection of 22 sections written by leading experts in this field who review and discuss the current status besides presenting their vision of future perspectives. Today, the principal challenges in applied magnonics are the excitation of sub-100 nm wavelength magnons, their manipulation on the nanoscale and the creation of sub-micrometre devices using low-Gilbert damping magnetic materials and its interconnections to standard electronics. To this end, magnonics offers lower energy consumption, easier integrability and compatibility with CMOS structure, reprogrammability, shorter wavelength, smaller device features, anisotropic properties, negative group velocity, non-reciprocity and efficient tunability by various external stimuli to name a few. Hence, despite being a young research field, magnonics has come a long way since its early inception. This Roadmap asserts a milestone for future emerging research directions in magnonics, and hopefully, it will inspire a series of exciting new articles on the same topic in the coming years.
The application of Brillouin light scattering to the study of the spin-wave spectrum of one-and two-dimensional planar magnonic crystals consisting of arrays of interacting stripes, dots and antidots is reviewed. It is shown that the discrete set of allowed frequencies of an isolated nanoelement becomes a finite-width frequency band for an array of identical interacting elements. It is possible to tune the permitted and forbidden frequency bands, modifying the geometrical or the material magnetic parameters, as well as the external magnetic field. From a technological point of view, the accurate fabrication of planar magnonic crystals and a proper understanding of their magnetic excitation spectrum in the GHz range is oriented to the design of filters and waveguides for microwave communication systems.
We report the observation of a Pt layer thickness dependence on the induced interfacial Dzyaloshinskii-Moriya interaction in ultrathin Pt(d_{Pt})/CoFeB films. Taking advantage of the large spin-orbit coupling of the heavy metal, the interfacial Dzyaloshinskii-Moriya interaction is quantified by Brillouin light scattering measurements of the frequency nonreciprocity of spin waves in the ferromagnet. The magnitude of the induced Dzyaloshinskii-Moriya coupling is found to saturate to a value of 0.45 mJ/m^{2} for Pt thicknesses larger than ∼2 nm. The experimental results are explained by analytical calculations based on the three-site indirect exchange mechanism that predicts a Dzyaloshinskii-Moriya interaction at the interface between a ferromagnetic thin layer and a heavy metal. Our findings open up a way to control and optimize chiral effects in ferromagnetic thin films through the thickness of the heavy-metal layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.