A dynamic transmission electron microscope (DTEM) has been designed and implemented to study structural dynamics in condensed matter systems. The DTEM is a conventional in situ transmission electron microscope (TEM) modified to drive material processes with a nanosecond laser, “pump” pulse and measure it shortly afterward with a 30-ns-long probe pulse of ∼107 electrons. An image with a resolution of <20nm may be obtained with a single pulse, largely eliminating the need to average multiple measurements and enabling the study of unique, irreversible events with nanosecond- and nanometer-scale resolution. Space charge effects, while unavoidable at such a high current, may be kept to reasonable levels by appropriate choices of operating parameters. Applications include the study of phase transformations and defect dynamics at length and time scales difficult to access with any other technique. This single-shot approach is complementary to stroboscopic TEM, which is capable of much higher temporal resolution but is restricted to the study of processes with a very high degree of repeatability.
One of the current major driving forces behind instrument development in transmission electron microscopy (TEM) is the ability to observe materials processes as they occur in-situ within the microscope. For many processes, such as nucleation and growth, phase transformations and mechanical response under extreme conditions, the beam current in even the most advanced field emission TEM is insufficient to acquire images with the temporal resolution (~1s -1ns) needed to observe the fundamental interactions taking place. The dynamic transmission electron microscope (DTEM) avoids this problem by using a short pulse laser to create an electron pulse of the required duration through photoemission which contains enough electrons to form a complete high resolution image. The current state-of-theart in high time resolution electron microscopy in this paper describes the development of the electron optics and detection schemes necessary to fully utilize these electron pulses for materials science. In addition, developments for future instrumentation and the experiments that are expected to be realized shortly will also be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.