For the period 1980-89, we estimate a carbon sink in the coterminous United States between 0.30 and 0.58 petagrams of carbon per year (petagrams of carbon = 10(15) grams of carbon). The net carbon flux from the atmosphere to the land was higher, 0.37 to 0.71 petagrams of carbon per year, because a net flux of 0.07 to 0.13 petagrams of carbon per year was exported by rivers and commerce and returned to the atmosphere elsewhere. These land-based estimates are larger than those from previous studies (0.08 to 0.35 petagrams of carbon per year) because of the inclusion of additional processes and revised estimates of some component fluxes. Although component estimates are uncertain, about one-half of the total is outside the forest sector. We also estimated the sink using atmospheric models and the atmospheric concentration of carbon dioxide (the tracer-transport inversion method). The range of results from the atmosphere-based inversions contains the land-based estimates. Atmosphere- and land-based estimates are thus consistent, within the large ranges of uncertainty for both methods. Atmosphere-based results for 1980-89 are similar to those for 1985-89 and 1990-94, indicating a relatively stable U.S. sink throughout the period.
There is general agreement that terrestrial systems in the Northern Hemisphere provide a significant sink for atmospheric CO2; however, estimates of the magnitude and distribution of this sink vary greatly. National forest inventories provide strong, measurement‐based constraints on the magnitude of net forest carbon uptake. We brought together forest sector C budgets for Canada, the United States, Europe, Russia, and China that were derived from forest inventory information, allometric relationships, and supplementary data sets and models. Together, these suggest that northern forests and woodlands provided a total sink for 0.6–0.7 Pg of C per year (1 Pg = 1015 g) during the early 1990s, consisting of 0.21 Pg C/yr in living biomass, 0.08 Pg C/yr in forest products, 0.15 Pg C/yr in dead wood, and 0.13 Pg C/yr in the forest floor and soil organic matter. Estimates of changes in soil C pools have improved but remain the least certain terms of the budgets. Over 80% of the estimated sink occurred in one‐third of the forest area, in temperate regions affected by fire suppression, agricultural abandonment, and plantation forestry. Growth in boreal regions was offset by fire and other disturbances that vary considerably from year to year. Comparison with atmospheric inversions suggests significant land C sinks may occur outside the forest sector.
Abstract. Results of an intercomparison among terrestrial biogeochemical models (TBMs) are reported, in which one diagnostic and five prognostic models have been run with the same long-term climate forcing. Monthly fields of net ecosystem production (NEP), which is the difference between net primary production (NPP) and heterotrophic respiration R H, at 0.5 ø resolution have been generated for the terrestrial biosphere. The monthly estimates of NEP in conjunction with seasonal CO 2 flux fields generated by the seasonal Hamburg Model of the Oceanic Carbon Cycle (HAMOCC3) and fossil fuel source fields were subsequently coupled to the three-dimensional atmospheric tracer transport model TM2 forced by observed winds. The resulting simulated seasonal signal of the atmospheric CO 2 concentration extracted at the grid cells corresponding to the locations of 27 background monitoring stations of the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory network is compared with measurements from these sites.The Simple Diagnostic Biosphere Model (SDBM1), which is tuned to the atmospheric CO 2 concentration at five monitoring stations in the northern hemisphere, successfully reproduced the seasonal signal of CO 2 at the other monitoring stations. The SDBM1 simulations confirm that the north-south gradient in the amplitude of the atmospheric CO 2 signal results from the greater northern hemisphere land area and the more pronounced seasonality of radiation and temperature in higher latitudes. In southern latitudes, ocean-atmosphere gas exchange plays an important role in determining the seasonal signal of CO 2. Most of the five prognostic models (i.e., models driven by climatic inputs) included in the intercomparison predict in the northern hemisphere a reasonably accurate seasonal cycle in terms of amplitude and, to some extent, also with respect to phase. In the tropics, however, the prognostic models generally tend to overpredict the net seasonal exchanges and stronger seasonal cycles than indicated by the diagnostic model and by observations. The differences from the observed seasonal signal of CO 2 may be caused by shortcomings in the phenology algorithms of the prognostic models or by not properly considering the effects of land use and vegetation fires on CO 2 fluxes between the atmosphere and terrestrial biosphere.
A global prognostic physiologically based model of the carbon budget in terrestrial ecosystems, the Frankfurt Biosphere Model (FBM), is applied to simulate the interannual variation of carbon exchange fluxes between the atmosphere and the terrestrial biosphere. The data on climatic forcing are based on Cramer and Leemans climate maps; the interannual variation is introduced according to records of temperature anomalies and precipitation anomalies for the period 1980 to 1993. The calculated net exchange flux between the atmosphere and the terrestrial biosphere is compared to the biospheric signal deduced from 13C measurements. Some intermediate results are presented as well: the contributions of the most important global ecosystems to the biospheric signal, the contributions of different latitudinal belts to the biospheric signal, and the responses of net primary production (NPP) and heterotrophic respiration (Rh). From the simulation results it can be inferred that the complex temperature and precipitation responses of NPP and Rh in different latitudes and different ecosystem types add up to a global CO2 signal contributing substantially to the atmospheric CO2 anomaly on the interannual timescale. The temperature response of NPP was found to be the most important factor determining this signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.