Metallurgical investigations aided by electron microscopy and associated techniques have been carried out on failed test specimens and bearings from service, to obtain information of use in the elucidation of the mechanisms of failure. Investigations have revealed that cracks initiating rolling contact fatigue can start at the surface and spread into the material, or start below the surface and spread outwards, the more dominant mechanism depending upon prevailing circumstances. Metallographic changes in surface material owing to rolling and sliding action, and subsurface microstructural changes at depths associated with the region of maximum Hertzian shearing stress can influence the mechanism of failure. Environment can affect the rate of crack propagation and mode of fracture; hydrogen embrittlement can be a contributory factor in catastrophic fracture, and non-metallic inclusions can have a dominant effect on the incidence of failure.
SURFACE CHANGESIt is known that fatigue is a surface phenomenon and can be greatly influenced by the physical nature of the surface and the surface finish. Surface finish, the method of surface finishing, and the stresses induced can greatly influence the Vol I 8 1 rt 3 0
Abstract:The field of in-pipe robotics covers a vast and varied number of approaches to the inspection of pipelines with robots specialising in pipes ranging anywhere from 10 mm to 1200 mm in diameter. Many of these developed systems focus on overcoming in-pipe obstacles such as T-sections and elbows, as a result important aspects of exploration are treated as sub-systems, namely shape adaptability. One of the most prevalent methods of hybridised locomotion today is wall-pressing; generating traction using the encompassing pipe walls. A review of wall-pressing systems has been performed, covering the different approaches taken since their introduction. The advantages and disadvantages of these systems is discussed as well as their effectiveness in the inspection of networks with highly varying pipe diameters. When compared to unconventional in-pipe robotic techniques, traditional full-bore wall-pressing robots were found to be at a disadvantage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.