We present a new census of the stellar and substellar members of the young cluster IC 348. We have obtained images at I and Z for a 42'x28' field encompassing the cluster and have combined these measurements with previous optical and near-infrared photometry. From spectroscopy of candidate cluster members appearing in these data, we have identified 122 new members, 15 of which have spectral types of M6.5-M9, corresponding to masses of 0.08-0.015 M_sun by recent evolutionary models. The latest census for IC 348 now contains a total of 288 members, 23 of which are later than M6 and thus are likely to be brown dwarfs. From an extinction-limited sample of members (A_V<=4) for a 16'x14' field centered on the cluster, we construct an IMF that is unbiased in mass and nearly complete for M/M_sun>=0.03 (<=M8). In logarithmic units where the Salpeter slope is 1.35, the mass function for IC 348 rises from high masses down to a solar mass, rises more slowly down to a maximum at 0.1-0.2 M_sun, and then declines into the substellar regime. In comparison, the similarly-derived IMF for Taurus from Briceno et al. and Luhman et al. rises quickly to a peak near 0.8 M_sun and steadily declines to lower masses. The distinctive shapes of the IMFs in IC 348 and Taurus are reflected in the distributions of spectral types, which peak at M5 and K7, respectively. These data provide compelling, model-independent evidence for a significant variation of the IMF with star-forming conditions.Comment: 47 pages, 14 figures, 3rd para of 4.5.3 has been added, this is final version in press at ApJ, also found at http://cfa-www.harvard.edu/sfgroup/preprints.htm
Aims. We quantify the contributions of 24 µm galaxies to the Far-Infrared (FIR) Background at 70 and 160 µm. We provide new estimates of the Cosmic Infrared Background (CIB), and compare it with the Cosmic Optical Background (COB). Methods. Using Spitzer data at 24, 70 and 160 µm in three deep fields, we stacked more than 19000 MIPS 24 µm sources with S 24 ≥ 60 µJy at 70 and 160 µm, and measured the resulting FIR flux densities.Results. This method allows a gain up to one order of magnitude in depth in the FIR. We find that the Mid-Infrared (MIR) 24 µm selected sources contribute to more than 70% of the Cosmic Infrared Background (CIB) at 70 and 160 µm. This is the first direct measurement of the contribution of MIR-selected galaxies to the FIR CIB. Galaxies contributing the most to the total CIB are thus z ∼ 1 luminous infrared galaxies, which have intermediate stellar masses. We estimate that the CIB will be resolved at 0.9 mJy at 70 and 3 mJy at 160 µm. By combining the extrapolation of the 24 µm source counts below analysis, we obtain lower limits of 7.1 ± 1.0 and 13.4 ± 1.7 nW m −2 sr −1 for the CIB at 70 and 160 µm, respectively. Conclusions. The MIPS surveys have resolved more than three quarters of the MIR and FIR CIB. By carefully integrating the Extragalactic Background Light (EBL) SED, we also find that the CIB has the same brightness as the COB, around 24 nW m −2 sr −1 . The EBL is produced on average by 115 infrared photons for one visible photon. Finally, the galaxy formation and evolution processes emitted a brightness equivalent to 5% of the primordial electromagnetic background (CMB).
We report new Spitzer 24 m photometry of 76 main-sequence A-type stars. We combine these results with previously reported Spitzer 24 m data and 24 and 25 m photometry from the Infrared Space Observatory and the Infrared Astronomy Satellite. The result is a sample of 266 stars with mass close to 2.5 M , all detected to at least the $7 level relative to their photospheric emission. We culled ages for the entire sample from the literature and/or estimated them using the H-R diagram and isochrones; they range from 5 to 850 Myr. We identified excess thermal emission using an internally derived K À 24 (or 25) m photospheric color and then compared all stars in the sample to that color. Because we have excluded stars with strong emission lines or extended emission (associated with nearby interstellar gas), these excesses are likely to be generated by debris disks. Younger stars in the sample exhibit excess thermal emission more frequently and with higher fractional excess than do the older stars. However, as many as 50% of the younger stars do not show excess emission. The decline in the magnitude of excess emission, for those stars that show it, has a roughly t 0 /time dependence, with t 0 $ 150 Myr. If anything, stars in binary systems (including Algoltype stars) and k Boo stars show less excess emission than the other members of the sample. Our results indicate that (1) there is substantial variety among debris disks, including that a significant number of stars emerge from the protoplanetary stage of evolution with little remaining disk in the 10-60 AU region and (2) in addition, it is likely that much of the dust we detect is generated episodically by collisions of large planetesimals during the planet accretion end game, and that individual events often dominate the radiometric properties of a debris system. This latter behavior agrees generally with what we know about the evolution of the solar system, and also with theoretical models of planetary system formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.