In the Netherlands, many prestressed concrete bridge girders are found to have insufficient shear–tension capacity. We tested four girders taken from a demolished bridge and instrumented these with traditional displacement sensors and acoustic emission (AE) sensors, and used cameras for digital image correlation (DIC). The results show that AE can detect cracking before the traditional displacement sensors, and DIC can identify the cracks with detailed crack kinematics. Both AE and DIC methods provide additional information for the structural analysis, as compared to the conventional measurements: more accurate cracking load, the contribution of aggregate interlock, and the angle of the compression field. These results suggest that both AE and DIC are suitable options that warrant further research on their use in lab tests and field testing of prestressed bridges.
Proof load testing can be an interesting method to assess existing bridges for which analytical methods are unable to provide an accurate assessment. In a proof load test, a load representative of the factored live load is applied to the bridge. If the bridge can carry this load without distress, the proof load test is successful, and the bridge proves it fulfils the code requirements. Since large loads are applied, the structure or element that is tested needs to be carefully monitored during the test. This paper reviews the literature on reported load tests and the measurement techniques used during these tests. It also includes the test goals these techniques can address, and the advantages and disadvantages of the contact and non-contact techniques. The result of this review is guidance for the selection of appropriate monitoring and measurement techniques during load tests. This practical recommendation can serve engineers during the preparation of a load test, and will be extended in the future with stop criteria validated with experimental results.
Advanced monitoring methods are required to identify stop criteria in proof-load tests. In this study, the combined methodology of two-dimensional digital image correlation and acoustic emission is investigated for its applicability for future implementation in field tests. The two monitoring systems are deemed to provide valuable insight with external measurements from digital image correlation and internal measurements from acoustic emission. Two overturned T-section reinforced concrete slabs (0.37 × 1.7 × 8.4 m) tested under laboratory conditions are used for the assessment. The first slab test served as a preliminary test to enable sensor placement and creation of a relevant loading protocol. The main scientific results lead to a proposal for a test procedure using the combined methodology based on results, observations, and experiences from an individual stop criteria assessment for the two methods. The results include full-field plots, an investigation of the time of crack detection and monitoring of crack widths with digital image correlation, and a qualitative assessment of activity vs. load followed by a quantitative evaluation of calm ratios using acoustic emission. The individual results show that both digital image correlation and acoustic emission can identify damage occurrence earlier than other secondary methods. At crack detection (415 kN), crack widths were measured at widths between 0.078 mm to 0.125 mm and can be monitored until reaching the stop criterion at 463 kN (Eurocode SLS threshold of wmax = 0.2 mm). The acoustic emission results were limited by the pre-defined loading protocol and thus, only indicated that damage occurred sometime between 300 kN and 500 kN (pre-defined load levels). Therefore, the proposal for test procedure involves a methodology, where the loading protocol may be updated during testing based on monitoring results and thus provide even more valuable data.
<p>In the Netherlands, many existing reinforced concrete slab bridges were built more than 50 years ago. Upon assessment with the new codes, a large number of this type of bridge rate insufficiently. Since many of these existing bridges present complex material properties and boundary conditions, proof load testing is considered an effective method to assess their capacity. However, to be able to safely apply proof load testing on slab bridges, verification in the laboratory is necessary. Therefore, experiments on reinforced concrete slabs of 5 m × 2,5 m × 0,3 m under a concentrated load with varying shear span to depth ratios are carried out in the laboratory of Delft University of Technology. Additionally, nonlinear finite element analysis is used to simulate the experiments following the guidelines of nonlinear finite element analysis published by the Dutch ministry of infrastructure and water management. The results from the finite element and experimental analyses are compared in terms of peak load, failure mode, and crack pattern. A good agreement between the experimental and numerical investigations is observed.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.