The passive stability of vertically elongated current-carrying toroidal plasmas has been investigated in the Compact Toroidal Hybrid, a stellarator/tokamak hybrid device. In this experiment, the fractional transform f, defined as the ratio of the imposed external rotational transform from stellarator coils to the total rotational transform, was varied from 0.04 to 0.50, and the elongation κ was varied from 1.4 to 2.2. Plasmas that were vertically unstable were evidenced by motion of the plasma in the vertical direction. Vertical drifts are measured with a set of poloidal field pickup coils. A three chord horizontally viewing interferometer and a soft X-ray diode array confirmed the drifts. Plasmas with low fractional transform and high elongation are the most susceptible to vertical instability, consistent with analytic predictions that the vertical mode in elongated plasmas can be stabilized by the poloidal field of a relatively weak stellarator equilibrium.
Axisymmetric equilibrium reconstruction using magnetohydrodynamic equilibrium solutions to the Grad–Shafranov equation has long been an important tool for interpreting tokamak experiments. This paper describes recent results in non-axisymmetric (three-dimensional) equilibrium reconstruction of nominally axisymmetric plasmas (tokamaks and reversed field pinches (RFPs)), and fully non-axisymmetric plasmas (stellarators). Results from applying the V3FIT code to CTH and HSX stellarator plasmas, RFX-mod RFP plasmas and the DIII-D tokamak are presented.
Tokamak-like sawtooth oscillations are observed in the Compact Toroidal Hybrid (CTH), a current-carrying stellarator. CTH has the unique ability to change the amount of the applied vacuum rotational transform from external stellarator coils relative to the rotational transform generated by the internal plasma current to investigate the effects of strong three-dimensional magnetic shaping on sawtooth behavior. The observed sawteeth in CTH, for plasmas with monotonically decreasing rotational transform profiles dominated by the plasma current, have characteristics of those observed on tokamaks including (1) a central emissivity rise and then a sudden crash with a well-defined inversion radius, (2) the presence of an m = 1 emissivity fluctuation, and (3) the normalized inversion surface radius scales with the total edge rotational transform. We explore the properties of an ensemble of discharges in CTH in which the fractional rotational transform, defined as the vacuum rotational transform divided by the total rotational transform, is systematically varied from 0.04 to 0.42 to observe changes in sawtooth oscillation dynamics. Over this range of the fractional rotational transform, the measured sawtooth period decreased by a factor of two. At a high fractional rotational transform, the sawtooth amplitude is observed to consist of only low-amplitude oscillations while the measured crash time of the sawtooth oscillation does not appear to have a strong dependence on the amount of the fractional transform applied. Experimental results indicate that the low-amplitude sawteeth are accompanied by a decrease in the sawtooth period and predominantly correlated with the mean elongation (due to the increasing fractional rotational transform) of the non-axisymmetric plasmas within CTH rather than other global equilibrium parameters.
Torsatron and stellarator plasma confinement devices rely on magnetic surface mapping to determine the critical vacuum magnetic field structure. A recently developed method employing an emissive filament offers some advantages over the traditional technique of mapping with a directed electron beam. On the Auburn torsatron a comparative study between the emissive filament and directed electron beam techniques has been conducted. The parameters varied in the comparative study are filament geometry, emission current, bias voltage, background gas pressure, and magnetic field strength. This comparative study indicates that the emissive filament technique is reliable over a broad and easily accessible range of parameters. We have also measured the spatial distribution of electrons on a given magnetic surface. As an application of the emissive filament technique, the optimization of the magnetic surfaces on the Auburn torsatron is shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.