We present an ultrafast neural network (NN) model, QLKNN, which predicts core tokamak transport heat and particle fluxes. QLKNN is a surrogate model based on a database of 300 million flux calculations of the quasilinear gyrokinetic transport model QuaLiKiz. The database covers a wide range of realistic tokamak core parameters. Physical features such as the existence of a critical gradient for the onset of turbulent transport were integrated into the neural network training methodology. We have coupled QLKNN to the tokamak modelling framework JINTRAC and rapid control-oriented tokamak transport solver RAPTOR. The coupled frameworks are demonstrated and validated through application to three JET shots covering a representative spread of H-mode operating space, predicting turbulent transport of energy and particles in the plasma core. JINTRAC-QLKNN and RAPTOR-QLKNN are able to accurately reproduce JINTRAC-QuaLiKiz T i,e and n e profiles, but 3 to 5 orders of magnitude faster. Simulations which take hours are reduced down to only a few tens of seconds. The discrepancy in the final source-driven predicted profiles between QLKNN and QuaLiKiz is on the order 1%-15%. Also the dynamic behaviour was well captured by QLKNN, with differences of only 4%-10% compared to JINTRAC-QuaLiKiz observed at mid-radius, for a study of density buildup following the L-H transition. Deployment of neural network surrogate models in multi-physics integrated tokamak modelling is a promising route towards enabling accurate and fast tokamak scenario optimization, Uncertainty Quantification, and control applications.
Numerous studies of the brightest Cambridge pulsar, B1133+16, have revealed little order in its individual pulses, apart from a weak 30‐odd‐rotation‐period fluctuation feature and that some 15 per cent of the star's pulsars are ‘nulls’. New Arecibo observations confirm this fluctuation feature and that it modulates all the emission, not simply the ‘saddle’ region. By replacing each pulse with a scaled version of the average profile, we were able to quench all subpulse modulation and thereby demonstrate that the star's ‘null’ pulses exhibit a similar periodicity. A subbeam carousel model with a sparse and irregular ‘beamlet’ population appears to be compatible with these characteristics.
The JET 2019-2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major Neutral Beam Injection (NBI) upgrade providing record power in 2019-2020, and tested the technical & procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle physics in the coming D-T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed Shattered Pellet Injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design & operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D-T benefited from the highest D-D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER.
Kinetic instabilities in the MHz range driven by runaway electrons (REs) have been observed for the first time during the current quench (CQ) in disruptions triggered by massive injection of argon in DIII-D. These instabilities are well-correlated with intermittent RE losses in the beginning of RE current formation. The runaway current phase is not observed when the power of instabilities exceeds a threshold. Novel measurements of the RE distribution function during the CQ indicate that the instabilities appear when RE energy (E RE ) exceeds 2.5-3 MeV, the number of modes grows linearly with E RE , and their frequencies lie in the range 0.1-3 MHz, below the ion cyclotron frequency. Possible plasma waves exciting by REs in this region are proposed. Increase of the amount of injected argon decreases the E RE and increases the success rate of the runaway current formation, while increase of the pre-disruption plasma current acts in the opposite direction. No dependence on the pre-disruption core electron temperature is found.
Numerous studies of conal pulsars, e.g. B1133+16, have revealed fluctuation features and a steady null fraction. Sensitive Arecibo observations provide an unprecedented ability to detect nulls and confirm previously found fluctuation features. By replacing each pulse with a scaled version of the average profile, we were able to quench all subpulse modulation, dubbed pulse‐modulation quelling (PMQ). It was surprising to note that the low‐frequency feature observed in the natural longitude resolved fluctuation spectra (LRF) persisted in the PMQ LRFs. It appears that we can conclude, then, that in the natural pulse sequence the nulls themselves reflect whatever underlying periodicity is responsible for the low‐frequency feature. Conversely, the aggregate fluctuation power of the low‐frequency feature changes little whether the pulse modulation is quelled or not, implying that the feature fluctuations are produced by the nulls!
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.