Phylogeography has become a powerful approach for elucidating contemporary geographical patterns of evolutionary subdivision within species and species complexes. A recent extension of this approach is the comparison of phylogeographic patterns of multiple co-distributed taxonomic groups, or comparative phylogeography.' Recent comparative phylogeographic studies have revealed pervasive and previously unrecognized biogeographic patterns which suggest that vicariance has played a more important role in the historical development of modern biotic assemblages than current taxonomy would indicate. Despite the utility of comparative phylogeography for uncovering such`cryptic vicariance', this approach has yet to be embraced by some researchers as a valuable complement to other approaches to historical biogeography. We address here some of the common misconceptions surrounding comparative phylogeography, provide an example of this approach based on the boreal mammal fauna of North America, and argue that together with other approaches, comparative phylogeography can contribute importantly to our understanding of the relationship between earth history and biotic diversi®cation.
Ecologists need an empirical understanding of physiological and behavioural adjustments that animals can make in response to seasonal and long-term variations in environmental conditions. Because many species experience trade-offs between timing and duration of one seasonal event versus another and because interacting species may also shift phenologies at different rates, it is possible that, in aggregate, phenological shifts could result in mismatches that disrupt ecological communities. We investigated the timing of seasonal events over 14 years in two Arctic ground squirrel populations living 20 km apart in Northern Alaska. At Atigun River, snow melt occurred 27 days earlier and snow cover began 17 days later than at Toolik Lake. This spatial differential was reflected in significant variation in the timing of most seasonal events in ground squirrels living at the two sites. Although reproductive males ended seasonal torpor on the same date at both sites, Atigun males emerged from hibernation 9 days earlier and entered hibernation 5 days later than Toolik males. Atigun females emerged and bred 13 days earlier and entered hibernation 9 days earlier than those at Toolik. We propose that this variation in phenology over a small spatial scale is likely generated by plasticity of physiological mechanisms that may also provide individuals the ability to respond to variation in environmental conditions over time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.