[1] Measurements of the aerosol light scattering coefficient (s sp ) at a wavelength of l = 550 nm were conducted at a coastal atmospheric research station in the east Atlantic Ocean during June 1999. Size distribution measurements between diameters of 3 nm and 40 mm (at ambient humidity) were used to derive scattering coefficients from Mie theory. The calculated scattering coefficients were about a factor of 7.4 higher than the measured scattering coefficients. The discrepancy was explained by a reduced cutoff of the sampling system at particle diameters between 6 and 8 mm, dependent on wind speed. The calculated aerosol scattering was about 1 order of magnitude higher than previously reported measurements in the MBL and is attributed to supermicrometer particles at sizes d > 10 mm dominating aerosol scattering.
In homogeneous atmospheres, backscatter and extinction coefficients are commonly determined by the inversion of lidar signals by using the slope method, i.e., from a linear least-squares fit to the logarithm on the range-compensated lidar return. We investigate the accuracy of this method. A quantitative analysis is presented of the influence of white noise and atmospheric extinction on the accuracy of the slope method and on the maximum range of lidar systems. To meet this objective, we simulate lidar signals with extinction coefficients ranging from 10(-3) km(-1) to 10 km(-1) with different signal-to-noise ratios. It is shown that the backscatter coefficient can be determined by using the slope method with an ccuracy of better than ~ 10% if the extinction coefficient is smaller than 1 km(-1) and the signal-to-noise ratio is better than ~ 1000. The accuracy in the calculated extinction coefficient is only better than ~ 10% if the extinction is larger than 1 km(-1) and the signal-to-noise ratio is better than ~2000. If th atmospheric extinction coefficient is smaller than 0.1 km(-1), then it is not possible to invert the extinction from lidar measurements with an accuracy of 10% or better unless the signal-to-noise ratio isunrealistically high.
[1] A scanning backscatter lidar was used to measure the depth and structure of the coastal atmospheric boundary layer and the evolution of primary aerosol (sea spray) plumes produced by breaking waves during the New Particle Formation and Fate in the Coastal Environment (PARFORCE) campaign at the Mace Head Atmospheric Research Station (Ireland) in September 1998 and in June 1999. The PBL structure was observed to vary from a single-layer well-mixed structure to multilayered structures. Comparison with in situ aircraft measurements of temperature and humidity exhibited good agreement. Using the lidar in the scanning mode allowed two-dimensional profiling over a spatial scale of 10 km, revealing significant primary aerosol plumes produced by breaking waves, particularly in the surf zone and at high wind speeds on the open sea. The initial plume heights were some tens of meters and evolved to hundreds of meters while transported over only a few kilometers from the source. The plumes were traceable to distances of more than 10 km down wind from the source.
The application of long-range infrared observation systems is challenging, especially with the currently available high spatial resolution infrared camera systems with resolutions comparable with their visual counterparts. As a result of these developments, the obtained infrared images are no longer limited by the quality of system but by atmospheric effects instead. For instance, atmospheric transmission losses and path radiance reduce the contrast of objects in the background and optical turbulence limits the spatial resolution in the images. Furthermore, severe image distortion can occur due to atmospheric refraction, which limits the detection and identification of objects at larger range. EOSTAR is a computer program under development to estimate these atmospheric effects using standard meteorological parameters and the properties of the sensor. Tools are provided to design targets and to calculate their infrared signature as a function of range, aspect angle, and weather condition. Possible applications of EOSTAR include mission planning, sensor evaluation and selection, and education. The user interface of EOSTAR is fully mouse-controlled, and the code runs on a standard Windows-based PC. Many features of EOSTAR execute almost instantaneous, which results in a user friendly code. Its modular setup allows its configuration to specific user needs and provides a flexible output structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.