Besides cost reduction, durability is the most important issue to be solved before commercialisation of PEM Fuel Cells can be successful. For a fuel cell operating under constant load conditions, at a relative humidity close to 100% and at a temperature of maximum 75 °C, using optimal stack and flow design, the voltage degradation can be as low as 1–2 μV·h. However, the degradation rates can increase by orders of magnitude when conditions include some of the following, i.e. load cycling, start–stop cycles, low humidification or humidification cycling, temperatures of 90 °C or higher and fuel starvation. This review paper aims at assessing the degradation mechanisms of membranes, electrodes, bipolar plates and seals. By collecting long‐term experiments as well, the relative importance of these degradation mechanisms and the operating conditions become apparent.
A steady-state, two-dimensional model is presented and discussed that describes the water transport in a proton exchange membrane fuel cell. Concentrated solution theory is used to describe the transport of water in the membrane, and of water vapor and liquid water in the electrodes. The inclusion of the liquid water transport into the model turned out to be essential for explaining recent experimental results on the effective drag coefficient and its dependence on operating conditions as well as on variations of the components that constitute the membrane electrode assembly.
Within the silicon photovoltaics (PV) community, there are many approaches, tools, and input parameters for simulating solar cells, making it difficult for newcomers to establish a complete and representative starting point and imposing high requirements on experts to tediously state all assumptions and inputs for replication. In this review, we address these problems by providing complete and representative input parameter sets to simulate six major types of crystalline silicon solar cells. Where possible, the inputs are justified and up-to-date for the respective cell types, and they produce representative measurable cell characteristics. Details of the modeling approaches that can replicate the simulations are presented as well. The input parameters listed here provide a sensible and consistent reference point for researchers on which to base their refinements and extensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.