This paper compares three different approaches when used against a problem of present and practical interest: the classification of radar return data from two classes of aircraft. The three approaches are: the typical feature extraction approach used for target classification when dealing with radar data; a multi layer perceptron neural network approach and; a branched multi layer perceptron neural network approach. The comparison was performed under equal conditions and at restricted sensor parameter conditions to demonstrate the anticipated advantage of the neural network approach in that it will be able to classify targets when the sensor parameters are not suitable for the feature extraction approach to work. The classification rate was used as the measure of effectiveness. Up to date the feature extraction approach has provided a classification rate of 84.1%. The multi layer perceptron consists of a one hidden layer network and the best classification rate it has provided is 86.8%. The branched multi layer perceptron consists of two separate multi layer perceptron neural networks trained to recognize only one class of targets and the best classification rate it has provided is 54.9%.The discrepancy in performance between the two neural network approaches is perhaps due to the more general structure with improved discrimination power of the branched network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.