Recent advances in culture-independent studies of microbes had proved to be more reliable and efficient than the conventional ones. The isolation of good quality and quantity of total community DNA are one of the major hurdles in this endeavour. Shearing of DNA during the extraction process and the co-extraction of inhibitory compounds reduce the quality of the isolated nucleic acids making it unsuitable for the construction of large insert metagenomic libraries. In the present study, a multi-level filtration step was brought in which efficiently isolated total bacterial DNA from three different environment samples. The preprocessing method could efficiently improve the 260/230 ratio of the isolated DNA by 2.3–45 % and decreased the protein contamination by 22.5–34.5 % on saltpan and arctic sediment samples, respectively. The more significant part of the experiment was that the DNA obtained was of high quality with minimal shearing making it most suitable for the construction of large insert genomic libraries. PCR amplification of 16S rRNA gene confirmed that the filtration method was effective in the isolation of high-quality DNA.
A simple, reliable method for genomic DNA extraction from sediments with minimum contaminants was developed to address the risk of poor quality DNA in metagenomic studies. Nine DNA extraction methods using 20% cetyl-trimethyl-ammonium bromide (CTAB) were performed and compared to develop an extraction protocol that can offer humic acid-free metagenomic DNA from marine and saltpan sediments. Community DNA extraction was executed via., Zhou et al. modified protocol using 20% CTAB treatment at different steps to compare the efficacy of humic acid removal. Out of nine DNA extraction methods, method 6 significantly improved the quality of DNA with efficient removal of humic substances. 16S rRNA gene amplification and spectrophotometric analysis confirmed the efficiency of method 6 to remove DNA inhibitors from marine sediments as well as saltpan samples. Inhibitors extracted along with metagenomic DNA outcome increased DNA yield and PCR inhibition in method 1 and 3. However, repeated 20% CTAB wash in method 6 ensured 16S amplification and least yield and concentration. Current study explains a detailed protocol based on 20% CTAB wash for the extraction of humic acid-free DNA from diverse sediment samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.