Shoot-tip derived callus cultures of Sorghum bicolor were transformed by Agrobacterium tumefaciens as well as by bombardment methods with the mutated pyrroline-5-carboxylate synthetase (P5CSF129A) gene encoding the key enzyme for proline biosynthesis from glutamate. The transgenics were selfed for three generations and T4 plants were examined for 100 mM NaCl stress tolerance in pot conditions. The effect of salt stress on chlorophyll and carotenoid contents, photosynthetic rate, stomatal conductance, internal carbon dioxide concentration, transpiration rates, intrinsic transpiration and water use efficiencies, proline content, MDA levels, and antioxidant enzyme activities were evaluated in 40-day-old transgenic lines and the results were compared with untransformed control plants. The results show that chlorophyll content declines by 65% in untransformed controls compared to 30-38% loss (significant at P < 0.05) in transgenics but not carotenoid levels. Photosynthetic rate (PSII activity) was reduced in untransformed controls almost completely, while it declined by 62-88% in different transgenic lines. Salinity induced ca 100% stomatal closure in untransformed plants, while stomatal conductance was decreased only by 64-81% in transgenics after 4 days. The intercellular CO2 decreased by ca 30% in individual transgenic lines. Malondialdehyde (MDA) content was lower in transgenics compared to untransformed controls. The activities of superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6) and glutathione reductase (GR; EC1.8.1.7) were quantified in leaves exposed to 100 mM NaCl stress and found higher in transgenics. The results suggest that transgenic lines were able to cope better with salt stress than untransformed controls by protecting photosynthetic and antioxidant enzyme activities.
This study describes a protocol for the induction of high frequency somatic embryogenesis directly from immature inflorescence explants in three sorghum genotypes (SPV-462, SPV-839, and M35-1). The effect of various growth regulators on somatic embryogenesis was investigated. High frequency somatic embrogenesis was obtained on Murashige and Skoog (MS) medium supplemented with 2 mg l −1 2,4-dichlorophenoxyacetic acid (2,4-D), and addition of 0.5 mg l −1 kinetin (KN) in the medium further improved the formation of somatic embryos per explant in all genotypes. The presence of 1.5 mg l −1 6-benzylaminopurine plus 1.0 mg l −1 KN in MS medium was most efficient for maturation and germination of somatic embryos. The genotype SPV-462 performed better than SPV-839 and M35-1 in terms of induction and germination of somatic embryos. Organogenesis also occurred in callus of all genotypes at the frequency of 20-25%. Regenerated plants from somatic embryos were successfully acclimatized in soil in the greenhouse where plants were grown to maturity, flowered, and set seeds. Regenerated plants appeared normal like that of the seed-raised plants.
Callus cultures from salt tolerant (CSR-10) and susceptible (Swarnadhan) varieties of Oryza sativa L. were established in Murashige and Skoog's (MS) medium containing lethal concentrations (50 mM) of rubidium chloride (RbCl) as a selective agent. While 95-100% cells were viable in callus cultures grown without RbCl, viability was 75% in 50 mM RbCl selected cultures. Growth of RbCl selected calli in presence of salt was comparable to that of callus grown without it. Cells tolerant to RbCl showed more vacuoles and accumulated more K(+) in comparison with their corresponding controls. Suspension cultures were established and uptake of (86)Rb(+) was measured at 10 and 20 min intervals, which revealed a linear relationship between the absorption of K(+) and time. Callus cultures (560-day-old) tolerant to 50 mM RbCl regenerated shoots with 35-40% frequencies in both the varieties, but the same age-old callus grown in the medium devoid of RbCl did not show any organogenesis. Callus cultures that are tolerant to 50 mM RbCl when exposed to 25 mM LiCl, 50 mM NaCl, 50 mM KCl and 25 mM CsCl also exhibited cross tolerance in both the varieties. This is the first time that a callus line of rice resistant to RbCl was raised and shown to accumulate a major cation K(+ )and also an increased influx of it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.