The evolution of SAW oscillator technology over the past 17 years is described and a review of the current state of the art for high-performance SAW oscillators is presented. This review draws heavily upon the authors' own experience and efforts, which have focused upon the development of a wide variety of SAW oscillators in response to numerous high-performance military system requirements.
The results of residual phase noise measurements on a number of VHF, UHF, and microwave amplifiers, both silicon bipolar junction transistor (BJT) and GaAs field effect transistor (FET) based, electronic phase shifters, frequency dividers and multipliers, etc., which are commonly used in a wide variety of frequency source and synthesizer applications are presented. The measurement technique has also been used to evaluate feedback oscillator components, such as the loop and buffer amplifiers, which can play important roles in determining an oscillator's phase noise spectrum (often in very subtle ways). While some information has previously been published related to component residual phase noise properties, it generally focused on the flicker noise levels of the devices under test, for carrier offset frequencies less than 10 kHz. The work reported herein makes use of an extremely low noise, 500 MHz SAW resonator oscillator (SAWRO) test source for residual phase noise measurements, both close-to-and far-from-the-carrier. Using this SAWRO test source at 500 MHz, we have been able to routinely achieve a measurement system phase noise floor of -184 dBc/Hz, or better, for carrier offset frequencies greater than 10 kHz, and a system flicker phase noise floor of -150 dBclHz, or better, a t 1 Hz carrier offset. The paper discusses the results of detailed residual phase noise measurements performed on components using this overall system configuration. Several interesting observations related to the residual phase noise properties of moderate to high power RF amplifiers, i.e.. amplifiers with 1 dB gain compression points in the range of +20 to +33 dBm. are highlighted.
Abstruct-This paper presents state-of-the-art results on 1-GHz surface transverse wave (STW) oscillators running at extremely high loop power levels. The high-Q single-mode STW resonators used in these designs have an insertion loss of 3.6 dB, an unloaded Q of 8000, a residual PM noise of -142 dB&z at a 1-Hz carrier offset, and operate at an incident power of up to +31 dBm in the loop. Other low-Q STW resonators and coupled resonator filters (CRF), with insertion losses in the 5-9 dB range, can conveniently handle power levels in excess of two Watts. These devices were incorporated into voltage controlled oscillators (VCO's) running from a 9.6-V dc source and provide an RF output power of +23 dBm at an RF/dc efficiency of 28%. Their tuning range was 750 kHz and the PM noise floor was -180 dBc/Hz. The oscillators, stabilized with the high-& devices and using specially designed AB-class power amplifiers, delivered an output power of +29 dBm and exhibited a PM noise floor of -184 dBc/Hz and a 1-Hz phase noise level of -17 dBc/Hz. The 1-Hz phase noise level was improved to -33 dBc/Hz using a commercially available loop amplifier. In this case, the output power was +22 dBm. In all cases studied, the loop amplifier was found to be the factor limiting the close-to-carrier oscillator phase noise performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.