Nature's photosynthesis uses the sun's energy with chlorophyll in plants as a catalyst to recycle carbon dioxide and water into new plant life. Only given sufficient geological time, millions of years, can new fossil fuels be formed naturally. The burning of our diminishing fossil fuel reserves is accompanied by large anthropogenic CO(2) release, which is outpacing nature's CO(2) recycling capability, causing significant environmental harm. To supplement the natural carbon cycle, we have proposed and developed a feasible anthropogenic chemical recycling of carbon dioxide. Carbon dioxide is captured by absorption technologies from any natural or industrial source, from human activities, or even from the air itself. It can then be converted by feasible chemical transformations into fuels such as methanol, dimethyl ether, and varied products including synthetic hydrocarbons and even proteins for animal feed, thus supplementing our food chain. This concept of broad scope and framework is the basis of what we call the Methanol Economy. The needed renewable starting materials, water and CO(2), are available anywhere on Earth. The required energy for the synthetic carbon cycle can come from any alternative energy source such as solar, wind, geothermal, and even hopefully safe nuclear energy. The anthropogenic carbon dioxide cycle offers a way of assuring a sustainable future for humankind when fossil fuels become scarce. While biosources can play a limited role in supplementing future energy needs, they increasingly interfere with the essentials of the food chain. We have previously reviewed aspects of the chemical recycling of carbon dioxide to methanol and dimethyl ether. In the present Perspective, we extend the discussion of the innovative and feasible anthropogenic carbon cycle, which can be the basis of progressively liberating humankind from its dependence on diminishing fossil fuel reserves while also controlling harmful CO(2) emissions to the atmosphere. We also discuss in more detail the essential stages and the significant aspects of carbon capture and subsequent recycling. Our ability to develop a feasible anthropogenic chemical carbon cycle supplementing nature's photosynthesis also offers a new solution to one of the major challenges facing humankind.
Starting with coal, followed by petroleum oil and natural gas, the utilization of fossil fuels has allowed the fast and unprecedented development of human society. However, the burning of these resources in ever increasing pace is accompanied by large amounts of anthropogenic CO2 emissions, which are outpacing the natural carbon cycle, causing adverse global environmental changes, the full extent of which is still unclear. Even through fossil fuels are still abundant, they are nevertheless limited and will, in time, be depleted. Chemical recycling of CO2 to renewable fuels and materials, primarily methanol, offers a powerful alternative to tackle both issues, that is, global climate change and fossil fuel depletion. The energy needed for the reduction of CO2 can come from any renewable energy source such as solar and wind. Methanol, the simplest C1 liquid product that can be easily obtained from any carbon source, including biomass and CO2, has been proposed as a key component of such an anthropogenic carbon cycle in the framework of a "Methanol Economy". Methanol itself is an excellent fuel for internal combustion engines, fuel cells, stoves, etc. It's dehydration product, dimethyl ether, is a diesel fuel and liquefied petroleum gas (LPG) substitute. Furthermore, methanol can be transformed to ethylene, propylene and most of the petrochemical products currently obtained from fossil fuels. The conversion of CO2 to methanol is discussed in detail in this review.
Published on Web 12/08/2008 Further, one of the major challenges of our time is to find efficient new solutions beyond our diminishing fossil fuels resources (oil, natural gas, coal) and the grave environmental consequences of excessive combustion of carbon-containing fuels and their products. The concept of the "Methanol Economy" that we have developed hinges on the chemical recycling of CO 2 to useful fuels. (i.e., methanol and DME) and other products. 1,2 At the same time, it renders carbon-containing fuels renewable (on the human time scale) and environmentally neutral. This not only allows us to mitigate a major human made cause of global warming but also provides us with an inexhaustible and generally available carbon source for ages to come.
We introduce a novel Organic Redox Flow Battery (ORBAT), for meeting the demanding requirements of cost, eco-friendliness, and durability for large-scale energy storage. ORBAT employs two different water-soluble organic redox couples on the positive and negative side of a flow battery. Redox couples such as quinones are particularly attractive for this application. No precious metal catalyst is needed because of the fast proton-coupled electron transfer processes. Furthermore, in acid media, the quinones exhibit good chemical stability. These properties render quinone-based redox couples very attractive for high-efficiency metal-free rechargeable batteries. We demonstrate the rechargeability of ORBAT with anthraquinone-2-sulfonic acid or anthraquinone-2,6-disulfonic acid on the negative side, and 1,2-dihydrobenzoquinone-3,5-disulfonic acid on the positive side. The ORBAT cell uses a membrane-electrode assembly configuration similar to that used in polymer electrolyte fuel cells. Such a battery can be charged and discharged multiple times at high faradaic efficiency without any noticeable degradation of performance. We show that solubility and mass transport properties of the reactants and products are paramount to achieving high current densities and high efficiency. The ORBAT configuration presents a unique opportunity for developing an inexpensive and sustainable metal-free rechargeable battery for large-scale electrical energy storage. The integration of electrical energy generated from solar and wind power into the grid is faced with the challenge of intermittent electricity output from these sources. This challenge can be effectively met by storing the electricity during times of excess production and releasing the electrical energy to the grid during times of peak demand. Rechargeable batteries are very attractive for energy storage because of their high energy efficiency and scalability.1-3 Since grid-scale electrical energy storage requires hundreds of gigawatt-hours to be stored, 4 the batteries for this application must be inexpensive, robust, safe and sustainable. None of today's mature battery technologies meet all of these requirements. The vanadium redox flow battery is one such battery technology that has reached an advanced level of development for grid-scale applications.5 However, the limited resources of vanadium, the high expense associated with the cell materials, and the toxicity hazard of using large quantities of soluble vanadium, have been the major challenges to the widespread adoption of the vanadium redox flow battery. 2,6,7 Aiming to overcome these disadvantages, we have demonstrated for the first time an aqueous redox flow battery that uses water-soluble organic redox couples at both electrodes that are metal-free. Such a battery has the potential to meet the demanding cost, durability, eco-friendliness, and sustainability requirements for grid-scale electrical energy storage. We have termed this battery an Organic Redox Flow Battery (ORBAT).In ORBAT, two different aqueous solutions...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.