An epidemic of high-pathogenicity avian influenza (HPAI) A virus subtype H7N7 occurred in The Netherlands in 2003 that affected 255 flocks and led to the culling of 30 million birds. To evaluate the effectiveness of the control measures, we quantified between-flock transmission characteristics of the virus in 2 affected areas, using the reproduction ratio Rh. The control measures markedly reduced the transmission of HPAI virus: Rh before detection of the outbreak in the first infected flock was 6.5 (95% confidence interval [CI], 3.1-9.9) in one area and 3.1 in another area, and it decreased to 1.2 (95% CI, 0.6-1.9) after detection of the first outbreak in both areas. The observation that Rh remained >1 suggests that the containment of the epidemic was probably due to the reduction in the number of susceptible flocks by complete depopulation of the infected areas rather than to the reduction of the transmission by the other control measures.
SUMMARYFour UK strains of three different serotypes were found to differ by only 2-3% of their S1 amino acids. The S1 sequences were also very similar to those of three Dutch isolates (D207, D274 and D3896), the greatest difference between two of the seven isolates being 4.4%. The few amino acid differences between the seven isolates were located largely between residues 19-122 and 251-347 of the mature S1 subunit.The seven isolates could be differentiated using 16 monoclonal antibodies in an enzymelinked immunosorbent assay. Some virus neutralizing (VN) antibody-inducing epitopes were common to all seven isolates even though the strains had been differentiated into three serotypes by polyclonal sera. The results indicate that the most antigenic of the VN antibody-inducing epitopes are formed by very few amino acids and that these occur in the first and third quarters of the S1 subunit. We suggest that serology-based epizootiological studies of IBV should, therefore, be augmented by the inclusion of nucleic acid sequencing and/or monoclonal antibody analysis.
Neutralizing monoclonal antibodies directed against five antigenic sites on the spike (S) S 1 glycopolypeptide of avian infectious bronchitis virus (IBV) were used to select neutralization-resistant variants of the virus. By comparing the nucleotide sequence of such variants with the sequence of the IBV parent strain, we located five antigenic sites on the amino acid sequence of the S 1 glycopolypeptide. The variants had mutations within three regions corresponding to amino acid residues 24 to 61, 132 to 149 and 291 to 398 of the S1 glycopolypeptide. The location of three overlapping antigenic sites on the IBV spike protein was similar to the location of antigenic sites on the spike protein of other coronaviruses.
Monoclonal antibodies (MAbs) directed against structural proteins of infectious bronchitis virus (IBV) were produced to analyse the antigenic structure of this virus. Competitive binding of enzyme-labelled and unlabelled MAbs to IBV peplomer protein was analysed in an antibody binding assay to test the relatedness of the epitopes defined by the MAbs. Based on the competition groups, eight epitope clusters were defined (S-A to S-H); six of these clusters (S1-A to S I-F) were located on the S1 subunit and two (S2-G and S2-H) on the $2 subunit of the peplomer protein.Epitope clusters S 1-A and S1-B overlapped extensively. The biological activities of the MAbs were determined and correlated to the epitope clusters. Monoclonal antibodies directed against epitope clusters S 1-A to S1-E and one MAb directed against cluster S2-G moderately to strongly neutralized IBV at titres higher than 2 log~o, whereas the remaining MAbs, directed against S1 and $2, neutralized at titres lower than 2 log~o. One MAb, directed against cluster S1-D, inhibited the agglutination of chicken erythrocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.