This work is devoted to the quantitative evaluation of the lattice ordering of opal films. Assembling colloidal crystals in a moving meniscus under random noise agitation produced opal films with generically the same lattice but different disorders. The lattice ordering is quantified by the magnitudes of harmonics in the Fourier transforms of (i) the scanning electron microscopy images to address the in‐plane lattice ordering and (ii) rotation diagrams of the optical transmission to address the regularity of crystal planes. In prepared opals, the strong deviation of the lattice from the face‐centered cubic symmetry is demonstrated. We find uneven lattice responses to changing the growth conditions, e.g., the 30% improvement of the hexagonal lattice ordering in the (111) growth plane accompanied by a ten‐time better ordering of (220) planes as a result of noise agitation. The suggested approach to characterize crystalline quality of the lattice is a general methodology that can be applied to the analysis of other three‐dimensional photonic crystals.
A scalable method for site‐selective, directed self‐assembly of colloidal opals on topologically patterned substrates is presented. Here, such substrate contains optical waveguides which couple to the colloidal crystal. The site‐selectivity is achieved by a capillary network, whereas the self‐assembly process is based on controlled solvent evaporation. In the deposition process, a suspension of colloidal microspheres is dispensed on the substrate and driven into the desired crystallization sites by capillary flow. The method has been applied to realize colloidal crystals from monodisperse dielectric spheres with diameters ranging from 290 to 890 nm. The method can be implemented in an industrial wafer‐scale process.
We report direct excitation of optically active Er centers in porous Si. Excitation spectroscopy performed close to the intracenter I415/2→I411/2 and I415/2→I49/2 transitions of Er3+ (4f11) ions allows us to identify two kinds of Er centers in porous Si: (i) Er diffused into porous nanograins with lower than cubic symmetry and (ii) Er centers incorporated in an amorphous silicalike matrix. The latter show much weaker thermal quenching of the Er3+ emission which decreases only by a factor of eight when the temperature is increased from 4.2 K up to 360 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.