The effects of heavy ion energy and nuclear interactions on the single-event upset (SEU) and single-event latchup (SEL) response of commercial and radiation-hardened CMOS ICs are explored. Above the threshold LET for direct ionization-induced upsets, little difference is observed in single-event upset and latchup cross sections measured using low versus high energy heavy ions. However, significant differences between lowand high-energy heavy ion test results are observed below the threshold LET for single-node direct ionization-induced upsets. The data suggest that secondary particles produced by nuclear interactions play a role in determining the SEU and SEL hardness of integrated circuits, especially at low LET. The role of nuclear interactions and implications for radiation hardness assurance and rate prediction are discussed.
Large-scale three-dimensional (3-D) device simulations, focused ion microscopy, and broadbeam heavy-ion experiments are used to determine and compare the SEU-sensitive volumes of bulk-Si and SOI CMOS SRAMs. Single-event upset maps and cross-section curves calculated directly from 3-D simulations show excellent agreement with broadbeam cross section curves and microbeam charge collection and upset images for 16 K bulk-Si SRAMs. Charge-collection and single-event upset (SEU) experiments on 64 K and 1 M SOI SRAMs indicate that drain strikes can cause single-event upsets in SOI ICs. 3-D simulations do not predict this result, which appears to be due to anomalous charge collection from the substrate through the buried oxide. This substrate charge-collection mechanism can considerably increase the SEU-sensitive volume of SOI SRAMs, and must be included in single-event models if they are to provide accurate predictions of SOI device response in radiation environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.