Carry Select Adder (CSLA) is one of the fastest adders used in many data-processing processors to perform fast arithmetic functions. From the structure of the CSLA, it is clear that there is scope for reducing the area and power consumption in the CSLA. This work uses a simple and efficient gate-level modification to significantly reduce the area and power of the CSLA. Based on this modification 8-, 16-, 32-, and 64-b square-root CSLA (SQRT CSLA) architecture have been developed and compared with the regular SQRT CSLA architecture. The proposed design has reduced area and power as compared with the regular SQRT CSLA with only a slight increase in the delay. This work evaluates the performance of the proposed designs in terms of delay, area, power, and their products by hand with logical effort and through custom design and layout in CMOS process technology. The results analysis shows that the proposed CSLA structure takes only 30.385ns which is better than the regular SQRT CSLA.
This paper presents a novel scalable and runtime dynamically reconfigurable FFT architecture for different wireless standards. With only 8 butterfly units, a reconfigurable FFT architecture for three different FFT points is realized using mixed radix-2 2 /2 3 /2 4 FFT algorithm in a modified Single-path Delay Feedback (SDF) pipelined architecture. Via a proper data flow reconfiguration it can support 64, 128 and 256. It can even be extended up to 8192-point transforms and uses only 13 butterfly units to realize 8192 points. This paper describes the implementation method of 256 and 128 point FFT, which is reconfigured partially from 64 point FFT. The whole system is implemented on a Xilinx XC2VP30 FPGA device. The implementation design addresses area efficiency and flexibility allowing the insertion of the partial modules dynamically to realize various FFT sizes. To verify the efficacy of this dynamic partial reconfigurable FFT design method, a conventional multiplexer based reconfigurable architecture was designed and tested on the same platform. Tested FPGA results for the Dynamic Partial Reconfigurable (DPR) method show the configuration time improvement and good area efficiency as compared to the reconfigurable architecture using conventional multiplexer techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.