Molecular beacon probes can be employed in a NASBA amplicon detection system to generate a specific fluorescent signal concomitantly with amplification. A molecular beacon, designed to hybridize within the target sequence, was introduced into NASBA reactions that amplify the genomic RNA of potato leafroll virus (PLRV). During amplification, the probe anneals to the antisense RNA amplicon generated by NASBA, producing a specific fluorescent signal that can be monitored in real-time. The assay is rapid, sensitive and specific. As RNA amplification and detection can be carried out in unopened vessels, it minimizes the risk of carry-over contaminations. Robustness has been verified on real-world samples. This homogeneous assay, called AmpliDet RNA, is a significant improvement over current detection methods for NASBA amplicons and is suitable for one-tube applications ranging from high-throughput diagnostics to in vivo studies of biological activities.
An isolate of Strawberry mottle virus (SMoV) was transferred from Fragaria vesca to Nicotiana occidentalis and Chenopodium quinoa by mechanical inoculation. Electron micrographs of infected tissues showed the presence of isometric particles of approximately 28 nm in diameter. SMoVassociated tubular structures were also conspicuous, particularly in the plasmodesmata of C. quinoa. DsRNA extraction of SMoV-infected N. occidentalis yielded two bands of 6n3 and 7n8 kbp which were cloned and sequenced. Gaps in the sequence, including the 5h and 3h ends, were filled using RT-PCR and RACE. The genome of SMoV was found to consist of RNA1 and RNA2 of 7036 and 5619 nt, respectively, excluding a poly(A) tail. Each RNA encodes one polyprotein and has a 3h noncoding region of " 1150 nt. The polyprotein of RNA1 contains regions with identities to helicase, viral genome-linked protein, protease and polymerase (RdRp), and shares its closest similarity with RNA1 of the tentative nepovirus Satsuma dwarf virus (SDV). The polyprotein of RNA2 displayed some similarity to the large coat protein domain of SDV and related viruses. Phylogenetic analysis of the RdRp region showed that SMoV falls into a separate group containing SDV, Apple latent spherical virus, Naval orange infectious mottling virus and Rice tungro spherical virus. Given the size of RNA2 and the presence of a long 3h non-coding region, SMoV is more typical of a nepovirus, although atypically for a nepovirus it is aphid transmissible. We propose that SMoV is a tentative member of an SDV-like lineage of picorna-like viruses.
Aims: The objective of this study was to develop a Nucleic Acid Sequence Based Amplification (NASBA) assay, targeting 16S rRNA sequences, for direct detection of viable cells of Ralstonia solanacearum, the causal organism of bacterial wilt. The presence of intact 16S rRNA is considered to be a useful indicator for viability, as a rapid degradation of this target molecule is found upon cell death. Methods and Results: It was demonstrated by RNase treatment of extracted nucleic acids from R. solanacearum cell suspensions that NASBA exclusively detected RNA and not DNA. The ability of NASBA to assess viability was demonstrated in two sets of experiments. In the first experiment, viable and chlorine-killed cells of R. solanacearum were added to a potato tuber extract and tested in NASBA and PCR. In NASBA, only extracts spiked with viable cells resulted in a specific signal after Northern blot analysis, whereas in PCR, targeting 16S rDNA sequences, both extracts with viable and killed cells resulted in specific signals. In the second experiment, the survival of R. solanacearum on metal strips was studied using NASBA, PCRamplification and dilution plating on the semiselective medium SMSA. A positive correlation was found between NASBA and dilution plating detecting culturable cells, whereas PCRamplification resulted in positive reactions also long after cells were dead. The detection level of NASBA for R. solanacearum added to potato tuber extracts was determined at 10 4 cfu per ml of extract, equivalent to 100 cfu per reaction. With purified RNA a detection level of 10 4 rRNA molecules was found. This corresponds with less than one bacterial cell, assuming that a metabolically active cell contains ca 10 5 copies of rRNA. Preliminary experiments demonstrated the potential of NASBA to detect R. solanacearum in naturally infected potato tuber extracts. Conclusions: NASBA specifically amplifies RNA from viable cells of R. solanacearum even present in complex substrates at a level of 100 cfu per reaction. Significance and Impact of the Study: The novel NASBA assay will be particularly valuable for detection of R. solanacearum in ecological studies in which specifically viable cells should be determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.