This paper presents a microelectromechanical system (MEMS)-based electrochemical seismic sensor with an anode and a cathode integrated on a single chip. The proposed approach decreases the number of requested wafers as the sensing unit from seven to two. In addition, no alignment and no bonding among the electrodes are needed, significantly simplifying the fabrication process. The experimental results indicate that the proposed device produced a sensitivity of 5771.7 V (m s−1)−1 at 1.4 Hz and a noise level of −163 dB (i.e. 7.1 (nm s−1)/Hz1/2) at 1 Hz. Moreover, the proposed device effectively responds to random ground motions, enabling the detection of low-frequency seismic motions caused by earthquake events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.