Benzene is a recognized haematotoxin and leukaemogen, but its mechanism of action and the role of genetic susceptibility are still unclear. Cytochrome P450 2E1 (CYP2E1) and myeloperoxidase (MPO) are involved in benzene activation; and NAD (P)H:quinine oxidoreductase 1 (NQO1), glutathione S-transferase theta 1 (GSTT1) and glutathione S-transferase mu 1 (GSTM1) participate in benzene detoxification. The common, well-studied single-nucleotide polymorphisms (SNPs) were analysed in these genes drawn from the toxicant-metabolizing pathways. A total of 100 workers with chronic benzene poisoning (CBP) and 90 controls were enrolled in China. There was a 2.82-fold (95% CI = 1.42-5.58) increased risk of CBP in the subjects with the NQO1 609C > T mutation genotype (T/T) compared with those carrying heterozygous (C/T) and wild-type (C/C). The subjects with the GSTT1 null genotype had a 1.91-fold (95% CI = 1.05-3.45) increased risk of CBP compared with those with GSTT1 non-null genotype. There was no association of CYP2E1 and MPO genotype with CBP. A three genes' interaction showed that there was a 20.41-fold (95% CI = 3.79-111.11) increased risk of CBP in subjects with the NQO1 609C > T T/T genotype and with the GSTT1 null genotype and the GSTM1 null genotype compared with those carrying the NQO1 609C > T C/T and C/C genotype, GSTT1 non-null genotype, and GSTM1 non-null genotype. The study provides evidence of an association of a gene-gene interaction with the risk of CBP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.