Benzene is a recognized haematotoxin and leukaemogen, but its mechanism of action and the role of genetic susceptibility are still unclear. Cytochrome P450 2E1 (CYP2E1) and myeloperoxidase (MPO) are involved in benzene activation; and NAD (P)H:quinine oxidoreductase 1 (NQO1), glutathione S-transferase theta 1 (GSTT1) and glutathione S-transferase mu 1 (GSTM1) participate in benzene detoxification. The common, well-studied single-nucleotide polymorphisms (SNPs) were analysed in these genes drawn from the toxicant-metabolizing pathways. A total of 100 workers with chronic benzene poisoning (CBP) and 90 controls were enrolled in China. There was a 2.82-fold (95% CI = 1.42-5.58) increased risk of CBP in the subjects with the NQO1 609C > T mutation genotype (T/T) compared with those carrying heterozygous (C/T) and wild-type (C/C). The subjects with the GSTT1 null genotype had a 1.91-fold (95% CI = 1.05-3.45) increased risk of CBP compared with those with GSTT1 non-null genotype. There was no association of CYP2E1 and MPO genotype with CBP. A three genes' interaction showed that there was a 20.41-fold (95% CI = 3.79-111.11) increased risk of CBP in subjects with the NQO1 609C > T T/T genotype and with the GSTT1 null genotype and the GSTM1 null genotype compared with those carrying the NQO1 609C > T C/T and C/C genotype, GSTT1 non-null genotype, and GSTM1 non-null genotype. The study provides evidence of an association of a gene-gene interaction with the risk of CBP.
The protective effects of folic acid on DNA damage and DNA methylation induced by N-methyl- N'-nitro- N-nitrosoguanidine (MNNG) in Kazakh esophageal epithelial cells were investigated using a 3 × 3 factorial design trial. The cells were cultured in vitro and exposed to media containing different concentrations of folic acid and MNNG, after which growth indices were detected. DNA damage levels were measured using comet assays, and genome-wide DNA methylation levels (MLs) were measured using high-performance liquid chromatography. The DNA methylation of methylenetetrahydrofolate reductase (MTHFR) and folate receptor- α (FR α) genes was detected by bisulfite sequencing polymerase chain reaction (PCR). The results showed significant increases in tail DNA concentration, tail length, and Olive tail moment ( p < 0.01); a significant reduction of genome-wide DNA MLs ( p < 0.01); and an increase in the methylation frequencies of MTHFR and FR α genes. In particular, significant differences were observed in the promoter regions of both genes ( p < 0.01). Our study indicated that a reduction in folic acid concentration promotes DNA damage and DNA methylation in Kazakh esophageal epithelial cells upon MNNG exposure. Thus, sufficient folic acid levels could play a protective role against the damage induced by this compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.