In this paper, the advantages of numerical simulation to improve the process of copper electroforming are demonstrated. In this regard, the finite element model of copper electroforming for a rotating cone electrode was first prepared and then, the effect of the key parameters, such as applied current density, solution conductivity, electrode spacing, and anode height, on the uniformity of the thickness was investigated. The model combines tertiary current distribution with Bulter–Volmer electrode kinetics and computational fluid dynamics at the turbulent condition. In order to validate the model, a cone‐shaped shell was produced by electroforming method in the laboratory. The obtained results illustrate that the tertiary current distribution model on the rotating cone cell cathode is accurate and efficient for the electroforming process simulation and it can be used for parametric studies. Moreover, the effect of the current density on the morphology and properties of the electroformed layer was investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.