Gut mucosal mast cells (MMC), which are nearly absent in normal mice are abundant during nematode infection. In normal mice, study of MMC precursors (MMC-P: cells giving rise to MMC colonies in the presence of IL-3) show that: (a) their frequency, judged by limiting dilution is very high in bone marrow (BM) and gut, and very low in most lymphoid organs and thoracic duct lymph (TDL); (b) gut MMC-P are Thy-1- Lyt-1-2- and are not rapidly replicating; (c) they are the progeny of less differentiated BM MMC-P which are attracted from the blood to the gut mucosa by local factor(s), other than antigen and T cell factors (since normal amounts of gut MMC-P are found in germ-free, nude, and newborn mice). In mice bearing the Wehi 3 tumor (which releases enough IL-3 to produce detectable blood levels) spleen and mesenteric lymph nodes (LN) show increased MMC-P frequency, the greatest increase being in the gut and BM, where numerous differentiated MMC are found. In Nippostrongylus brasiliensis (Nb)-infested mice (known to develop a large, T cell-dependent, gut MMC infiltration), gut MMC-P proliferation is induced by IL-3 released from gut mucosal Thy-1+ Lyt-2- cells, whose in vitro IL-3 release capability is much higher than that of similar cells from normal mice. Both Nb-stimulated T blasts and proliferating MMC-P undergo cyclic traffic, migrating into the TDL and then seeding the whole length of the gut (a process which allows a widespread immune defense after a local antigenic stimulus). Experiments using 2-d interruption of this traffic and fetal gut grafts, suggest that the continuous homing of T blasts back to the gut which leads to permanent Nb-stimulated IL-3 release, is essential for the full maturation of MMC. Transfer experiments in the rat show that TDL circulating MMC-P rapidly mature into MMC when they home back to the Nb-infested gut. It is proposed that gut MMC arise after several stages of progressive differentiation of MMC-P, influenced both by IL-3 and unidentified gut factor(s).
1. Mast cell populations in rat lung and spleen were characterized by the presence of two specific protease markers, rat mast cell protease I and II, using both histochemical and radioimmunoassay techniques. Three mast cell populations with different size, morphology, and localization were found in lung and spleen and were identified according to the expression of rat mast cell protease I (RMCPI+) or rat mast cell protease II (RMCPII+) or of both proteases (RMCPI/II+). 2. All three mast cell types were in the vicinity of calcitonin-gene-related-peptide-immunoreactive (CGRP+) nerve fibres in controls as well as in rats infected by Nippostrongylus brasiliensis in which a large increase in the number of both RMCPII+ and RMCPI/II+ mast cells was found. Ablation of the CGRP+ fibres by neonatal treatment with capsaicin resulted in a marked increase in the number of RMCPII+ and RMCPI/II+ cells in lung and, even more, in spleen of adult rats. 3. The interaction of mast cells with CGRP+ C-fibres was assessed pharmacologically by evaluation of the effects of histamine H3-receptor ligands known to act on various types of nerve endings, including those of C-fibres. The effects of H3-receptor ligands were assessed in controls, nematode-infected rats and neonatally capsaicinized rats. Mast cell activity was evaluated by measurement of [3H]histamine synthesis from [3H]histidine. In control rats, administration of the H3-receptor agonist (R)-alpha-methylhistamine and antagonist thioperamide, decreased and enhanced respectively [3H]histamine synthesis in lung and spleen, indicating a tonic control of mast cell activity by histamine via H3-receptors. Such effects were not found in the jejunum, although RMCPII+ mast cells are in close apposition with neuropeptide-containing fibres. The effects of the H3-receptor agents were maintained in lung and spleen of nematode-infected rats, but were almost suppressed in capsaicinized rats. 4. It is concluded that the control of mast cells by histamine acting at H3-receptors involves neuropeptide-containing nerves and presumably reflects the operation of a local neuron-mast cell feedback loop controlling processes such as 'neurogenic inflammation'. This loop still functions when mast cells proliferate in an inflammatory condition. These observations suggest that the use of histamine H3-receptor agonists may constitute a novel therapeutic approach to limit excessive inflammatory responses resulting from dysregulation of this feedback loop.
et d'l mmunologie, Thiverval-GrignonHomogenates prepared from the developmental stages of the nematodes, Nippostrongylus brasiliensis (a rat parasite) and Haemochus contortus (a sheep parasite) were found to react specifically with two myeloma sera that possess anti-phosphorylcholine binding activity. Some properties of the phosphorylbearing components and of the precipitation reaction are presented and the postulated biochemical nature of these components is discussed.
Brain-gut interactions and intestinal motility were studied during pulmonary and jejunal inflammation induced by Nippostrongylus brasiliensis. Jejunal electromyographic activity was continuously recorded from day 1 before to day 28 after infection. Expression of c- fos was assessed in the brain by immunohistochemistry, and myeloperoxidase (MPO) activity was determined in lung and intestine on days 1, 7, 14, 21, and 28 postinfection. The cyclic intestinal motor pattern was replaced by an irregular activity from day 4, corresponding to larvae migration to the intestine, to day 14. c- fos was expressed in the caudal nucleus of the solitary tract (NTS) and lateral parabrachial nucleus (LPB) on day 1 (lung stage of N. brasiliensis) and in the medial part of the NTS, the LPB, and locus ceruleus on day 7. Pulmonary and intestinal MPO activity was increased from days 1 to 21 postinfection. During N. brasiliensis infection, c- fos expression indicates that specific and different brain nuclei are activated at the onset of pulmonary and intestinal inflammation, which is associated with motor disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.