Funding informationLinnea SA; Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR), Grant/ Award Number: Progetto Eccellenza-DiSFeB Skin inflammatory diseases result from complex events that include dysregulation and abnormal expression of inflammatory mediators or their receptors in skin cells. The present study investigates the potential effect of a Cannabis sativa L. ethanolic extract standardized in cannabidiol as antiinflammatory agent in the skin, unraveling the molecular mechanisms in human keratinocytes and fibroblasts. The extract inhibited the release of mediators of inflammation involved in wound healing and inflammatory processes occurring in the skin. The mode of action involved the impairment of the nuclear factor-kappa B (NF-κB) pathway since the extract counteracted the tumor necrosis factor-alpha-induced NF-κB-driven transcription in both skin cell lines. Cannabis extract and cannabidiol showed different effects on the release of interleukin-8 and vascular endothelial growth factor, which are both mediators whose genes are dependent on NF-κB. The effect of cannabidiol on the NF-κB pathway and metalloproteinase-9 (MMP-9) release paralleled the effect of the extract thus making cannabidiol the major contributor to the effect observed. Down-regulation of genes involved in wound healing and skin inflammation was at least in part due to the presence of cannabidiol. Our findings provide new insights into the potential effect of Cannabis extracts against inflammation-based skin diseases.
The 8p11 myeloproliferative syndrome (EMS) is associated with three translocations, t(8;13)(p11;q12), t(8;9)(p11;q33), and t(6;8)(q27;p11), that fuse unrelated genes (ZNF198, CEP110, and FOP, respectively) to the entire tyrosine kinase domain of FGFR1. In all cases thus far examined (n = 10), the t(8;13) results in an identical mRNA fusion between ZNF198 exon 17 and FGFR1 exon 9. To determine if consistent fusions are also seen in the variant translocations, we performed RT-PCR on four cases and sequenced the products. For two patients with a t(8;9), we found that CEP110 exon 15 was fused to FGFR1 exon 9. For two patients with a t(6;8), we found that FOP exon 5 (n = 1) or exon 7 (n = 1) was fused to FGFR1 exon 9. To determine if FGFR1 might be involved in other myeloid disorders with translocations of 8p, we developed a two-color FISH assay using two differentially labeled PAC clones that flank FGFR1. Disruption of this gene was indicated in a patient with a t(8;17)(p11;q25) and Ph-negative chronic myeloid leukemia in association with systemic malignant mast cell disease, a patient with acute myeloid leukemia with a t(8;11)(p11;p15), and two cases with T-cell lymphoma, myeloproliferative disorder, and marrow eosinophilia with a t(8;12)(p11;q15) and ins(12;8)(p11;p11p21), respectively. For the patient with the t(8;11), the chromosome 11 breakpoint was determined to be in the vicinity of NUP98. We conclude that 1) all mRNA fusions in EMS result in splicing to FGFR1 exon 9 but breakpoints in FOP are variable, 2) two-color FISH can identify patients with EMS, and 3) the t(8;17)(p11;q25), t(8;11)(p11;p15), t(8;12)(p11;q15), and ins(12;8)(p11;p11p21) are novel karyotypic changes that most likely involve FGFR1.
Cancer cachexia is a life-threatening syndrome that affects most patients with advanced cancers and causes severe body weight loss, with rapid depletion of skeletal muscle. No treatment is available. We analyzed microarray data sets to identify a subset of genes whose expression is specifically altered in cachectic muscles of Yoshida hepatoma-bearing rodents but not in those with diabetes, disuse, uremia or fasting. Ingenuity Pathways Analysis indicated that three genes belonging to the C-X-C motif chemokine receptor 4 (CXCR4) pathway were downregulated only in muscles atrophying because of cancer: stromal cell-derived factor 1 (SDF1), adenylate cyclase 7 (ADCY7), and p21 protein-activated kinase 1 (PAK1). Notably, we found that, in the Rectus Abdominis muscle of cancer patients, the expression of SDF1 and CXCR4 was inversely correlated with that of two ubiquitin ligases induced in muscle wasting, atrogin-1 and MuRF1, suggesting a possible clinical relevance of this pathway. The expression of all main SDF1 isoforms (α, β, γ) also declined in Tibialis Anterior muscle from cachectic mice bearing murine colon adenocarcinoma or human renal cancer and drugs with anticachexia properties restored their expression. Overexpressing genes of this pathway (that is, SDF1 or CXCR4) in cachectic muscles increased the fiber area by 20%, protecting them from wasting. Similarly, atrophying myotubes treated with either SDF1α or SDF1β had greater total protein content, resulting from reduced degradation of overall long-lived proteins. However, inhibiting CXCR4 signaling with the antagonist AMD3100 did not affect protein homeostasis in atrophying myotubes, whereas normal myotubes treated with AMD3100 showed time- and dose-dependent reductions in diameter, until a plateau, and lower total protein content. This further confirms the involvement of a saturable pathway (that is, CXCR4). Overall, these findings support the idea that activating the CXCR4 pathway in muscle suppresses the deleterious wasting associated with cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.