The roughness of fault surfaces is important in the mechanics of fault slip and could play a role in determining whether sliding occurs via earthquakes or fault creep. We have made preliminary measurements of the power spectral density of several fault surfaces over the wavelength range from 10 -5 to 1 m. using field and laboratory scale profilimeters.
The structural elements in a rock are characterized by their density in Preisach-Mayergoyz space (PM space). This density is found for a Berea sandstone from stress-strain data and used to study the response of the sandstone to elaborate pressure protocols. Hysteresis with discrete memory, in agreement with experiment, is found. The relationship between strain, quasistatic modulus, and dynamic modulus is established. Nonlinear wave propagation, the production of copious harmonics, and nonlinear attenuation are demonstrated. PM space is shown to be the central construct in a new paradigm for the description of the elastic behavior of consolidated materials.
A constitutive model is developed which predicts the mechanical properties of two rough surfaces in contact under shear load during the early stages of the development of frictional sliding. The model includes the development of slip at the contacts, a phenomenon which begins immediately upon shear loading. Upon initial application of the normal load, the model predicts that the joint consists of a finite number of contacts which are subject to a wide variety of local normal loads. As the shear load is increased, sliding of the contacts develops progressively, with the contacts under low local normal load sliding first. This gradual development of sliding is the cause of the experimentally observed nonlinear force‐displacement relation for deformation of the joint in shear. Two asperity scale strength laws are examined, one based on the adhesion theory of friction and the other based on observations of frictional strength for brittle elastic solids. The model is tested with experiments on lapped surfaces of Westerly Granite with a variety of surface roughnesses and under a range of normal loads from 10 to 35 MPa. Geometric parameters used in the model are constrained by direct measurement of surface profiles. For both strength laws, the model quantitatively predicts the shear compliance and development of slip for the first few microns of shear displacement, successfully describing the effect of surface roughness and normal load. This model helps explain the initial yield in the friction curve which corresponds to the gradual transition from the elastic deformation and partial slip of asperity contacts to a condition of fully sliding contacts. When a large population of contacts are fully sliding, the model under‐estimates the frictional strength, indicating that displacement strengthening mechanisms are important to the ultimate frictional strength of rocks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.