In this paper, we develop an approach for finding the cofactor, ad joint, determinant and inverse of a three by three matrix under the Cell Arrangements method using the coefficient matrix of a given systems of linear equation in three unknowns. The method takes out completely the seemingly daunting task in evaluating such matrices associated to the standard matrix method in solving simultaneous equation in three variable. Unlike the standard matrix method that goes through a lengthy process to obtain separately all the matrices necessary for the determination of the unknowns, the structural frame of the Cell Arrangement method comes in handy and are consistent with the results from systems that have unique solutions. This alternative approach provides all the vital hybrid matrices of the coefficient matrix needed in the determination of the unknowns of the system of equations in three variables. It is our view that by far, the Cell arrangement method is easy to work with and less prone to errors that are often connected with other known methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.