The paper proves convergence for three uniquely defined recursive sequences, namely, arithmetico-geometric sequence, the Newton-Raphson recursive sequence, and the nested/composite recursive sequence. The three main hurdles for this prove processes are boundedness, monotonicity, and convergence. Oftentimes, these processes lie in the predominant use of prove by mathematical induction and also require some bit of creativity and inspiration drawn from the convergence monotone theorem. However, these techniques are not adopted here, rather, as a novelty, extensive use of basic manipulation of inequalities and useful equations are applied in illustrating convergence for these sequences. Moreover, we established a mathematical expression for the limit of the nested recurrence sequence in terms of its leading term which yields favorable results.
Most drums used in Africa and in other parts of the world have varied shapes and sizes in their design. The hourglass shaped talking drums in Ghana is a pressurized drum which alters the tension on the drumhead, and as a result the pitches of the sounds emanating from it due to the strings that hold the drumhead in place, both from its upper and lower circumference. Remarkably, and in contrast to the circular drum with constant tension on the drum head, this drum possesses both harmonic and rhythmic characteristics. In this work the drumhead is modeled, by making the tension in it to vary as a periodic function of time, using the two dimensional wave equation. The separated Ordinary Differential Equations (ODEs) are solved and the FourierBessel coefficients are determined using the initial and boundary conditions imposed on the equation. For a suitable choice of radial functions, the normal modes from our model are in good agreement with experimental values for harmonic instruments which produce integral overtones.
No abstract
This paper discusses a gallery of useful results in connection with integrating factors that are often left as problems for discovery learning and are generally not taught in typical Ordinary Differential Equations courses. Most often than not the approach earlier writers employ is to give a possible form for an integrating factor that may results in an integrating curve without practical prove as far as the subject matter is concerned. In this write-up, an attempt is made by solving the resulting partial differential equation emanating from an underlining general differential equation of a non-exact form, by the use of the ratio theorem to establish various intricate possibilities of integrating factors that are seldom and often relegated to the background, even though they may be equally be applied as a function of a unitary variable or a linear combination of both the dependent and independent variables under certain conditions. Granted an integrating factor is found and such a function applied, the benefit is enormous especially the non-exact differential equation reduces into a known type which may be identified as exact, homogeneous, and or separable that yields a solution.
In this paper, we develop an approach for finding the cofactor, ad joint, determinant and inverse of a three by three matrix under the Cell Arrangements method using the coefficient matrix of a given systems of linear equation in three unknowns. The method takes out completely the seemingly daunting task in evaluating such matrices associated to the standard matrix method in solving simultaneous equation in three variable. Unlike the standard matrix method that goes through a lengthy process to obtain separately all the matrices necessary for the determination of the unknowns, the structural frame of the Cell Arrangement method comes in handy and are consistent with the results from systems that have unique solutions. This alternative approach provides all the vital hybrid matrices of the coefficient matrix needed in the determination of the unknowns of the system of equations in three variables. It is our view that by far, the Cell arrangement method is easy to work with and less prone to errors that are often connected with other known methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.