In this paper, we introduce a new approach to learn dissimilarity for interactive search in content based image retrieval. In literature, dissimilarity is often learned via the feature space by feature selection, feature weighting or a parameterized function of the features. Different from existing techniques, we use relevance feedback to adjust dissimilarity in a dissimilarity space. To create a dissimilarity space, we use Pekalska's method [15]. After the user gives feedback, we apply active learning with one-class SVM on this space. Results on a Corel dataset of 10000 images and a TrecVid collection of 43907 keyframes show that our proposed approach can improve the retrieval performance over the feature space based approach.
At one end of the spectrum, research in interactive content-based retrieval concentrates on machine learning methods for effective use of relevance feedback. On the other end, the information visualization community focuses on effective methods for conveying information to the user. What is lacking is research considering the information visualization and interactive retrieval as truly integrated parts of one content-based search system. In such an integrated system, there are many degrees of freedom like the similarity function, the number of images to display, the image size, different visualization modes, and possible feedback modes. To base the optimal values for all of those on user studies is unfeasible. We therefore develop search scenarios in which tasks and user actions are simulated. From there, the proposed scheme is optimized based on objective constraints and evaluation criteria. In such a manner, the degrees of freedom are reduced and the remaining degrees can be evaluated in user studies. In this article, we present a system that integrates advanced similarity based visualization with active learning. We have performed extensive experimentation on interactive category search with different image collections. The results using the proposed simulation scheme show that indeed the use of advanced visualization and active learning pays off in all of these datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.