Background Spinal cord stimulation (SCS) is a useful neuromodulatory technique for treatment of certain neuropathic pain conditions. However, the optimal stimulation parameters remain unclear. Methods In rats after L5 spinal nerve ligation, we compared the inhibitory effects on mechanical hypersensitivity from bipolar SCS of different intensities (20%, 40%, 80% motor threshold) and frequencies (50-Hz, 1-kHz, and 10-kHz). We then compared the effects of 1-kHz and 50-Hz dorsal column stimulation at high and low stimulus intensities on conduction properties of afferent Aα/β-fibers and spinal wide-dynamic-range neuronal excitability. Results Three consecutive daily SCS at different frequencies progressively inhibited mechanical hypersensitivity in an intensity-dependent manner. At 80% motor threshold, the ipsilateral paw withdrawal threshold (%preinjury) increased significantly from pre-SCS measures, beginning with the first day of SCS at the frequencies of 1-kHz (50.2 ± 5.7% from 23.9 ± 2.6%, n = 19, mean ± SEM) and 10-kHz (50.8 ± 4.4 % from 27.9 ± 2.3%, n = 17), while it was significantly increased beginning on the second day in the 50-Hz group (38.9 ± 4.6% from 23.8 ± 2.1%, n = 17). At high intensity, both 1-kHz and 50-Hz dorsal column stimulation reduced Aα/β-compound action potential size recorded at the sciatic nerve, but only 1-kHz stimulation was partially effective at the lower intensity. The number of actions potentials in C-fiber component of wide-dynamic-range neuronal response to windup-inducing stimulation was significantly decreased after 50-Hz (147.4 ± 23.6 from 228.1 ± 39.0, n = 13), but not 1-kHz (n = 15), dorsal column stimulation. Conclusions Kilohertz SCS attenuated mechanical hypersensitivity in a time course and amplitude that differed from conventional 50-Hz SCS, and may involve different peripheral and spinal segmental mechanisms.
This paper describes a model of tumor-induced bone destruction and hyperalgesia produced by implantation of fibrosarcoma cells into the mouse calcaneus bone. Histological examination indicates that tumor cells adhere to the bone edge as early as post-implantation day (PID) 3, but osteolysis does not begin until PID 6, correlating with the development of hyperalgesia. C3H/He mice exhibit a reproducible hyperalgesia to mechanical and cold stimuli between PID 6 and 16. These behaviors are present but significantly reduced with subcutaneous implantation that does not involve bone. Systemic administration of morphine (ED(50) 9.0 mg/kg) dose-dependently attenuated the mechanical hyperalgesia. In contrast, bone destruction and hypersensitivity were not evident in mice implanted with melanoma tumors or a paraffin mass of similar size. A novel microperfusion technique was used to identify elevated levels of the putative algogen endothelin (ET) in perfusates collected from the tumor sites of hyperalgesic mice between PID 7 and 12. Increased ET was evident in microperfusates from fibrosarcoma tumor-implanted mice but not from melanoma tumor-implanted mice, which are not hyperalgesic. Intraplantar injection of ET-1 in naive and, to a greater extent, fibrosarcoma tumor-bearing mice produced spontaneous pain behaviors, suggesting that ET-1 activates primary afferent fibers. Intraplantar but not systemic injection of the ET-A receptor antagonist BQ-123 partially blocked tumor-associated mechanical hyperalgesia, indicating that ET-1 contributes to tumor-induced nociception. This model provides a unique approach for quantifying the behavioral, biochemical, and electrophysiological consequences of tumor-nerve interactions.
These results suggest a potential cellular mechanism underlying spinal cord stimulation-induced pain relief. This in vivo model allows the neurophysiologic basis for spinal cord stimulation-induced analgesia to be studied.
Accurately monitoring motor and non-motor symptoms as well as complications in people with Parkinson's disease (PD) is a major challenge, both during clinical management and when conducting clinical trials investigating new treatments. A variety of strategies have been relied upon including questionnaires, motor diaries, and the serial administration of structured clinical exams like part III of the MDS-UPDRS. To evaluate the potential use of mobile and wearable technologies in clinical trials of new pharmacotherapies targeting PD symptoms, we carried out a project (project BlueSky) encompassing four clinical studies, in which 60 healthy volunteers (aged 23-69; 33 females) and 95 people with PD (aged 42-80; 37 females; years since diagnosis 1-24 years; Hoehn and Yahr 1-3) participated and were monitored in either a laboratory environment, a simulated apartment, or at home and in the community. In this paper, we investigated (i) the utility and reliability of self-reports for describing motor fluctuations; (ii) the agreement between participants and clinical raters on the presence of motor complications; (iii) the ability of video raters to accurately assess motor symptoms, and (iv) the dynamics of tremor, dyskinesia, and bradykinesia as they evolve over the medication cycle. Future papers will explore methods for estimating symptom severity based on sensor data. We found that 38% of participants who were asked to complete an electronic motor diary at home missed~25% of total possible entries and otherwise made entries with an average delay of >4 h. During clinical evaluations by PD specialists, self-reports of dyskinesia were marked bỹ 35% false negatives and 15% false positives. Compared with live evaluation, the video evaluation of part III of the MDS-UPDRS significantly underestimated the subtle features of tremor and extremity bradykinesia, suggesting that these aspects of the disease may be underappreciated during remote assessments. On the other hand, live and video raters agreed on aspects of postural instability and gait. Our results highlight the significant opportunity for objective, high-resolution, continuous monitoring afforded by wearable technology to improve upon the monitoring of PD symptoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.