Mutations in Myo7a cause hereditary deafness in mice and humans. We describe the effects of two mutations, Myo7a(6J) and Myo7a(4626SB), on mechano-electrical transduction in cochlear hair cells. Both mutations result in two major functional abnormalities that would interfere with sound transduction. The hair bundles need to be displaced beyond their physiological operating range for mechanotransducer channels to open. Transducer currents also adapt more strongly than normal to excitatory stimuli. We conclude that myosin VIIA participates in anchoring and holding membrane-bound elements to the actin core of the stereocilium. Myosin VIIA is therefore required for the normal gating of transducer channels.
SUMMARYVestibular hair cells (VHCs) and cochlear outer hair cells (OHCs) of neonatal mice were stimulated by a fluid jet directed at their stereociliary bundles. Relations between the force exerted by the jet, bundle displacement, and the resulting transducer current were studied. The mean maximum transducer conductance in VHCs (2.6 nS) was about half that of the OHCs (5.5 nS), with the largest recorded values being 4.1 nS and 9.2 nS, respectively. In some OHCs activity of a single, 112 pS transducer channel was observed, allowing an estimate of the maximum number of channels : up to 36 in VHCs and 82 in OHCs, corresponding to about one transducer channel per tip link. The VHC bundles required about 330 nm of tip displacement to activate 90 % of the maximum transducer conductance, compared to 150 nm for the OHC bundles. This corresponded to 2 deg of rotation about their pivots for both, due to the greater length of the VHC bundles. The VHC bundles' translational stiffness was one-seventh of that of the OHCs. Conversion to rotational stiffness almost abolished this difference. Rotation of the hair bundle rather than translation determines the gating of the transducer channels, independent of bundle height or origin of the cells.
Myosin VIIA is expressed by sensory hair cells and has a primary structure predicting a role in membrane trafficking and turnover, processes that may underlie the susceptibility of hair cells to aminoglycoside antibiotics. [3H]Gentamicin accumulation and the effects of aminoglycosides were therefore examined in cochlear cultures of mice with different missense mutations in the myosin VIIA gene, Myo7a, to see whether myosin VIIA plays a role in aminoglycoside ototoxicity. Hair cells from homozygous mutant Myo7ash1 mice, with a mutation in a nonconserved region of the myosin VIIA head, respond rapidly to aminoglycoside treatment and accumulate high levels of gentamicin. Hair cells from homozygous mutant Myo7a6J mice, with a mutation at a highly conserved residue close to the ATP binding site of the myosin VIIA head, do not accumulate [3H]gentamicin and are protected from aminoglycoside ototoxicity. Hair cells from heterozygotes of both alleles accumulate [3H]gentamicin and respond to aminoglycosides. Although aminoglycoside uptake is thought to be via apical surface-associated endocytosis, coated pit numbers on the apical membrane of heterozygous and homozygous Myo7a6J hair cells are similar. Pulse-chase experiments with cationic ferritin confirm that the apical endocytotic pathway is functional in homozygous Myo7a6J hair cells. Transduction currents can be recorded from both heterozygous and homozygous Myo7a6J hair cells, suggesting it is unlikely that the drug enters via diffusion through the mechanotransducer channel. The results show that myosin VIIA is required for aminoglycoside accumulation in hair cells. Myosin VIIA may transport a putative aminoglycoside receptor to the hair cell surface, indirectly translocate it to sites of membrane retrieval, or retain it in the endocytotic pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.