Mild traumatic brain injury (mTBI) can induce long-term behavioral and cognitive disorders. Although the exact origin of these mTBI-related disorders is not known, they may be the consequence of diffuse axonal injury (DAI). Here, we investigated whether MRI at the subacute stage can detect lesions that are associated with poor functional outcome in mTBI by using anatomical images (T(1) ) and diffusion tensor imaging (DTI). Twenty-three patients with mTBI were investigated and compared with 23 healthy volunteers. All patients underwent an MRI investigation and clinical tests between 7 and 28 days (D15) and between 3 and 4 months (M3) after injury. Patients were divided in two groups of poor outcome (PO) and good outcome (GO), based on their complaints at M3. Groupwise differences in gray matter partial volume between PO patients, GO patients and controls were analyzed using Voxel-Based Morphometry (VBM) from T(1) data at D15. Differences in microstructural architecture were investigated using Tract-Based Spatial Statistics (TBSS) and the diffusion images obtained from DTI data at D15. Permutation-based non-parametric testing was used to assess cluster significance at p < 0.05, corrected for multiple comparisons. Twelve GO patients and 11 PO patients were identified on the basis of their complaints. In PO patients, gray matter partial volume was significantly lower in several cortical and subcortical regions compared with controls, but did not differ from that of GO patients. No difference in diffusion variables was found between GO and controls. PO patients showed significantly higher mean diffusivity values than both controls and GO patients in the corpus callosum, the right anterior thalamic radiations and the superior longitudinal fasciculus, the inferior longitudinal fasciculus and the fronto-occipital fasciculus bilaterally. In conclusion, PO patients differed from GO patients by the presence of diffusion changes in long association white matter fiber tracts but not by gray matter partial volume. These results suggest that DTI at the subacute stage may be a predictive marker of poor outcome in mTBI.
BACKGROUND AND PURPOSE:The corpus callosum is an important predilection site for traumatic axonal injury but may be unevenly affected in head trauma. We hypothesized that there were local differences in axonal injury within the corpus callosum as investigated with diffusion tensor imaging (DTI), varying among patients with differing severity of traumatic brain injury (TBI).
The feasibility, efficacy, and safety of PV were confirmed in patients experiencing pain related to malignant spinal tumors with epidural extension, with a low complication rate. PV should become part of the palliative analgesic treatment for such patients. (c) RSNA, 2010.
We report the first case of a 22-year-old man, with a previously neurosurgically treated intramedullary anaplastic oligodendroglioma (World Health Organization grade III), who developed 19 months later two histologically proven intracranial metastases. We support a hypothesis whereby the anaplastic parts of tumors have spread along the spinal cord and brainstem via the cerebrospinal fluid pathways, a process that could be promoted by surgical manipulation, although the relative contribution of the two factors remains speculative.
SAH led to changes in cerebrospinal fluid hydrodynamics in the majority of patients. Acute HC was communicating in most cases, even when there was intraventricular bleeding. In the late phase, all chronic HC were communicating and did not display aqueductal stenosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.