In light of Title I of the Clean Air Act Amendments of 1990, selenium will most probably be considered for regulation in the electric power industry. This has generated interest for removing this element from fossil-fired flue gas. This study deals with coal combustion: selenium volatilization and its speciation in the cooled flue gas were investigated to better understand its chemical behavior to validate the thermodynamic approach to such complex systems and to begin developing emission control strategies. Se volatility is influenced by several factors such as temperature, residence time, fuel type, particle size, and Se speciation of the fuels, as well as the forms of the Se inthe spiked coal/coke. Spiked coke and coal samples were burned in a thermobalance, and atomic Se and its dioxide were identified in the cooled combustion flue gas by X-ray photoelectron spectroscopy (XPS). A thermodynamic calculation was applied to a complex system including 54 elements and 3,200 species that describes the coal combustion. Several theoretical predictions concerning Se behavior, such as its speciation in flue gas, agreed well with experiments, which supports using thermodynamics for predicting trace element chemistry in combustion systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.