The effects of combinations of different fertiliser rates and grazing methods applied to phalaris-based pastures on an acid, saline, yellow sodosol on the Dundas Tablelands of western Victoria (mean annual rainfall 623�mm) were measured from 1997 to 2000. The objective was to help identify management systems that improve phalaris growth and persistence, water use, and animal production, and thereby the productivity and sustainability of grazing systems. Pastures were either set stocked with low [mean 6.4 kg phosphorus (P)/ha.year] or high (mean 25 kg P/ha.year) fertiliser rates, or rotationally grazed with high fertiliser (mean 25 kg P/ha.year). Rotational grazing was implemented as either a simple '4-paddock' system (fixed rotation length), or a more intensive system where rotation length varied with pasture growth rate. Unreplicated paddocks of volunteer pasture (dominated by onion grass and annual grass weeds) receiving an average of 8 kg P/ha.year were also monitored. All treatments were stocked with spring-lambing Merino ewes. Stocking rate was an emergent property of each treatment, and was driven by pasture quality and availability. Total pasture herbage accumulation ranged from 7150 to 9750 kg DM/ha.year and was significantly lower on the set-stocked, low-fertility treatment than on all other treatments. A significant treatment.day effect in the spline analysis of herbage mass was explained by a trend toward higher pasture mass in the rotationally grazed treatments than set-stocked treatments from the break of season until mid-spring. Rotational grazing led to significantly higher phalaris herbage accumulation than set stocking (mean 3680 v. 2120 kg DM/ha.year), but significantly lower subterranean clover herbage accumulation (1440 v. 2490 kg DM/ha.year). Despite the stronger growth of deep-rooted phalaris in the rotationally grazed treatments, maximum soil water deficits at the end of summer differed only slightly between treatments, with the difference between driest and wettest treatments amounting to only 14 mm. Summer growth of phalaris was apparently insufficient to generate significant differences in soil water extraction at depth, even when phalaris content was increased by rotational grazing, and re-wetting of the soil profile occurred at a similar rate for all treatments. Rotationally grazed treatments supported higher stocking rates than set-stocked treatments at high fertiliser rates (mean 14.9 v. 13.7 ewes/ha), but apparent losses in pasture feeding value due to lower legume content under rotational grazing meant that there were few significant differences between treatments in lamb production per hectare. The experiment showed that grazing method can have a substantial and rapid effect on pasture botanical composition. There are clear opportunities for producers to use temporal and spatial combinations of set stocking and rotational grazing to manipulate herbage mass and pasture composition within broad target ranges for achieving both animal production (e.g. high per-head animal performance) and sustainability (e.g. persistence of perennial grasses) objectives. Rigid application of either set stocking or rotational grazing imposes limitations on both pasture and animal production, and neither grazing method will optimise system performance under all conditions. The experiment also demonstrated that management and land-use changes that have much greater potential to increase water use than those examined here will be needed to ensure the sustainability of pasture systems in the high rainfall zone of western Victoria.
The effect of superphosphate fertiliser on digestible dry matter (DDM) and crude protein (CP) percentages of perennial ryegrass and subterranean clover was assessed on a long-term, grazed experiment in western Victoria. CP of both species increased significantly (3–6 units) where long-term average phosphorus (P) applications were 33 kg/ha.year compared with 1 kg/ha.year. CP of herbage was also greater on paddocks grazed at higher (9–23 ewes/ha) than lower (5–13 ewes/ha) stocking rates (1–3 units). DDM of subterranean clover significantly increased (8–10 units) with higher superphosphate applications but there was little effect on the DDM of perennial ryegrass. Long-term applications of superphosphate were associated with larger increases in both DDM and CP than if the same rate was applied in autumn of the year of measurement. For subterranean clover, 30 kg/ha of P applied to infertile soils (Olsen P 5 mg/kg) in autumn increased the DDM of herbage collected in September by only 4–6 units. The nutritive value of most volunteer pasture species also increased with higher superphosphate applications but the DDM of these species was usually inferior to perennial ryegrass. The results highlight the importance of monitoring nutritive value, pasture composition, and herbage production to quantify fully the likely effect of fertiliser applications on animal production.
Abstract. The planting of deep-rooted pasture species, herbaceous shrubs, and trees has been widely recommended to reduce deep drainage and recharge to the groundwater in the high rainfall zone (HRZ). However, in more recent years, the value of perennial pastures to reduce recharge has been questioned in areas with >600 mm annual rainfall. Currently, pastures dominated by annual species with relatively low productivity occur across much of the HRZ where deep drainage is most likely contributing to recharge. This review outlines our current understanding of water use by various herbaceous species, and indicates ways in which their water use may be increased in the HRZ of southern Australia.To reduce deep drainage in the HRZ, the soil water deficit must be increased prior to the opening autumn rains. This will allow a greater storage of water before any potential deep drainage occurs. There are two ways that this can be achieved with the use of herbaceous species. Firstly, change to or encourage species that use more water annually. Although plants with deeper root systems including lucerne have the ability to dry the soil to depth, a combination of winter-and summer-active species, rotational grazing, and pasture spelling would extend the active growing season and soil water use of annual and perennial species. A second option is to increase the productivity of the pasture, as there is a direct link between growth and water use. For example, improving pasture productivity by 50%, say from 8 to 12 t dry matter/ha, could use (transpire) approximately 160 mm more water annually by a C 3 species, irrespective of evaporation from the soil surface or evaporative demand factors. This is supported by strong correlations between plant dry mass and water use among a wide range of C 3 and C 4 plants of diverse growth form and habitat. This relationship appears to have been overlooked in recent studies of various components of the soil water balance model, possibly due to limited and unreliable estimates of evapotranspiration (ET). An improved relationship between 'estimated' ET and measured dry matter production should improve the capability of the soil water balance model to predict deep drainage, which is primarily dependent on the ET. Ways to increase pasture productivity and soil water use include regular applications of fertiliser and lime, and better management of waterlogged and acidic soils in the HRZ. Summer-active native species may also be useful on soils where the persistence of other deep-rooted perennials is poor; however, little is known about their productivity and persistence when heavily grazed.We believe that the relationship between water use and pasture production needs to be reassessed to improve the predictability of the soil water balance approach and recommend further research in both the field and under controlled conditions to determine the potential for increased water use in the HRZ of southern Australia by combinations of plant species and greater pasture productivity.A R 0 2 0 8 3 W a t e r u ...
Two pasture systems (Typical, Upgraded) were compared at five on-farm sites across south-western Victoria between 1990 and 1996. The Typical pasture treatment mimicked the pastures common in the region, with volunteer annual-based species fertilised with ~5 kg/ha.year phosphorus (P). The Upgraded pasture treatment was sown to phalaris, perennial ryegrass and subterranean clover using cultivars recommended for the particular area. Higher rates of fertiliser (13–25 kg/ha.year P) plus other nutrients were applied. Both pastures were set-stocked with breeding ewes. The stocking rate on the Typical treatments was based on normal farm practice. Initially, the stocking rate of the Upgraded pastures was 15% higher than the Typical pastures and increased over time depending if the ewes in the Upgraded pastures were heavier than those in the Typical pastures. Measurements included pasture growth, composition and persistence, ewe stocking rates, ewe and lamb liveweights and condition scores, lambing, marking and weaning percentages, fleece characteristics and supplementary feeding. Over the 6 years, the average carrying capacity of the Upgraded pastures was 18.0 DSE (Dry Sheep Equivalents)/ha compared with 10.2 DSE/ha on the Typical pastures (P < 0.001). As well, the ewes on the Upgraded pastures were 2–3 kg heavier (P < 0.001) and 0.3 condition score higher (P < 0.001) than those on the Typical pastures. Ewes grazing the Upgraded pastures cut significantly more wool per head (4.8 versus 4.5 kg) of higher micron wool (23.1 versus 22.6 um, P < 0.001) but with similar yield and strength. There was no difference in the supplementary feeding required on the treatments. Ewes grazing Upgraded pastures had significantly higher lambing (116 versus 102%), marking (86 versus 81%) and weaning percentages (84 versus 79%) and weaned significantly heavier lambs (23.6 versus 22.6 kg) than those on Typical pastures. There was less feed on offer (P < 0.05) in the Upgraded pastures compared with the Typical pastures in autumn–winter but similar or higher levels in spring and summer. Gross margins using current costs and prices were $20 and $24/DSE for the Typical and Upgraded pastures, respectively. These values were used in a discounted cash flow analysis to determine the long-term benefits of the treatments. Assuming a 12-year life for the pasture, the internal rate of return was 27% with the breakeven point in Year 7. Treatment and ewe condition score significantly influenced lambing percentage with ewes in condition score 3.0 at joining having a lambing percentage of 111% compared with 95% if at condition score 2.3. Irrespective of condition score, ewes grazing Upgraded pastures had a 7% higher lambing percentage than those grazing the Typical pastures. Ewe condition score and lambing time significantly affected weaning weight. Lambs born to ewes in condition score 2.3 during pregnancy and lambing in autumn, reached only 32% of mature ewe liveweight at weaning whereas lambs from ewes at condition score 3.0 achieved 51% of mature weight by weaning.
Achieving higher lamb weaning percentages by reducing lamb mortality can improve the profitability of sheep enterprises. In this paper we estimated the financial benefits from providing shelter to reduce the mortality of twin lambs in self-replacing Merino or dual-purpose Merino flock enterprises in south-west Victoria. A whole-farm bio-economic model (MIDAS) was initially used to estimate the increase in profit from reducing mortality of twin lambs and a second analysis included the costs of using perennial grass hedges to provide the shelter during lambing. The economic value of providing shelter was tested at three rates of twinning (10, 30 and 50%), three rates of mortality without shelter (70, 50 and 30%) and two levels of reduction in lamb mortality by providing shelter (25 and 50% reduction). A sensitivity analysis to wool and lamb prices, costs of establishing the grass hedges and stocking rates in the shelter area were also tested. Overall, more than 2500 scenarios were tested. Across the range of twinning rates and levels of twin mortality tested, at standard wool and meat prices, providing shelter to the dual-purpose Merino ewe flock was always profitable ($0.05 to 11.35/ewe) and the profits from providing shelter to the self-replacing Merino ewe flock were generally lower ($0.15 to $6.35/ewe). The impacts of changing wool and lamb prices depended on enterprise type, whereas the costs of establishment of the hedges or stocking rate of ewes in the hedge area during lambing had little impact on profitability. The main factor that determined the economic return from shelter was the reduction in mortality provided by the shelter but the proportion of twin-bearing ewes in the flock and the base rate of lamb mortality without shelter was also important. Overall, based on the assumptions used, we conclude that the profitability of many sheep enterprises lambing during frequent high chill weather conditions in temperate areas of south-eastern Australia could be improved by providing low cost shelter for twin-bearing Merino ewes lambing from July to September.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.