The energy of the 12 C, 16 O, 20 Ne, 24 Mg and 32 S 4n-nuclei has been determined within a generalized liquid drop model and assuming different planar and three-dimensional shapes of α-molecules : linear chain, triangle, square, tetrahedron, pentagon, trigonal bipyramid, square pyramid, hexagon, octahedron, octogon and cube. The potential barriers governing the entrance and decay channels via α absorption or emission as well as more symmetric binary and ternary reactions have been compared. The rms radii of the linear chains differ from the experimental rms radii of the ground states. The binding energies of the three-dimensional shapes at the contact point are higher than the ones of the planar configurations. The alpha particle plus A-4 daughter configuration leads always to the lowest potential barrier. The binding energy can be reproduced within the sum of the binding energy of n α particles plus the number of bonds multiplied by 2.4 MeV or by the sum of the binding energies of one alpha particle and the daughter nucleus plus the Coulomb energy and the proximity energy.
The influence of Ce(IV) doping on ZTS and KHP crystals over a concentration range from 1 to 10 mol% in the solution during crystallization, which leads to a true concentration range from few ppm to few tens of ppm in the crystals has been investigated. The XRD and FT-IR analyses indicate that the crystal undergoes considerable stress as a result of doping. Incorporation of the Ce(IV) dopant into the crystal lattice was well confirmed by energy dispersive X-ray spectroscopy (EDS) and quantified by inductively coupled plasma (ICP) technique. The high-resolution X-ray diffraction (HRXRD) studies reveal that Ce doping in KHP leads to degradation of crystal quality whereas ZTS can accommodate Ce predominantly at the substitutional sites without any degradation of crystalline perfection. The second harmonic generation (SHG) efficiency is not influenced by Ce doping in the KHP crystals while in ZTS crystals, it is enhanced to a considerable extent correlated with moderately improved crystalline perfection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.