Abstract. This paper presents a novel combination of local-local information for an efficient finger-knuckle-print (FKP) based recognition system which is robust to scale and rotation. The non-uniform brightness of the FKP due to relatively curvature surface is corrected and texture is enhanced. The local features of the enhanced FKP are extracted using the scale invariant feature transform (SIFT) and the speeded up robust features (SURF). Corresponding features of the enrolled and the query FKPs are matched using nearest-neighbour-ratio method and then the derived SIFT and SURF matching scores are fused using weighted sum rule. The proposed system is evaluated using PolyU FKP database of 7920 images for both identification mode and verification mode. It is observed that the system performs with CRR of 100% and EER of 0.215%. Further, it is evaluated against various scales and rotations of the query image and is found to be robust for query images downscaled upto 60% and for any orientation of query image.
This paper describes a prototype of robust biometric system for verification. The system uses features extracted using Speeded Up Robust Features (SURF) operator of human hand. The hand image for features is acquired using a low cost scanner. The extracted palmprint region is robust to hand translation and rotation on the scanner. The system is tested on IITK database and PolyU database. It has FAR 0.02%, FRR 0.01% and an accuracy of 99.98% at original size. The system addresses the robustness in the context of scale, rotation and occlusion of palmprint. The system performs at accuracy more than 99% for scale, more than 98% for rotation, and more than 99% for occlusion. The robustness and accuracy suggest that it can be a suitable system for civilian and high-security environments.
This paper proposes a palmprint based verification system which uses low-order Zernike moments of palmprint sub-images. Euclidean distance is used to match the Zernike moments of corresponding sub-images of query and enrolled palmprints. These matching scores of sub-images are fused using a weighted fusion strategy. The proposed system can also classify the sub-image of palmprint into non-occluded or occluded region and verify user with the help of non-occluded regions. So it is robust to occlusion. The palmprint is extracted from the acquired hand image using a low cost flat bed scanner. A palmprint extraction procedure which is robust to hand translation and rotation on the scanner has been proposed. The system is tested on IITK, PolyU and CASIA databases of size 549, 5239 and 7752 hand images respectively. It performs with accuracy of more than 98%, and FAR, FRR less than 2% for all the databases.
Abstract. This paper makes use of one dimensional Discrete Cosine Transform (DCT) to design an efficient palmprint based recognition system. It extracts the palmprint from the hand images which are acquired using a flat bed scanner at low resolution. It uses new techniques to correct the non-uniform brightness of the palmprint and to extract features using difference of 1D-DCT coefficients of overlapping rectangular blocks of variable size and variable orientation. Features of two palmprints are matched using Hamming distance while nearest neighbor approach is used for classification. The system has been tested on three databases, viz. IITK, CASIA and PolyU databases and is found to be better than the well known palmprint systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.