Background: Manganese is a toxic essential trace element and too high concentration instigates the neurodegenerative disease known as parkinsonism. Effects of manganese may lead to apoptosis. However, a detailed mechanism of manganese toxicity has not been fully elucidated. Previous published articles have highlighted the augmentation of KHSRP expression following Mn exposure. Objectives: In this work, the importance of KHSRP in Mn-induced toxicity was checked along with the impact of other known neurotoxicity inhibitors on KHSRP. Materials and Methods: KHSRP expression, pro and anti-inflammatory cytokines, chemokines, and pharmacological inhibitors (SAHA, Quercetin, and MCC950) were determined by exposing N2a cells to various MnCl 2 concentrations. ANOVA and Dunnett's test were used to decide on the significance. Results: MnCl 2 treatment led to the augmentation of the KHSPR mRNA expression and protein increase in N2a cell line. The MnCl 2 treatment of N2a cells also showed an elevated liberation of IL-6, TNF-α, MCP-1, and IL-1β. Pharmacological agents like quercetin inhibiting PI3K, MAPK, and WNT pathways, MCC950 blocking NLRP3 pathways, and SAHA showed a decrease in KHSRP expression post Mn treatment. With the inhibition of KHSRP, a decline in the release of IL-1β, IL-6, MCP-1, and TNF-α was also observed. Conclusion: These results suggested that MnCl 2 treatment of N2a cells induce the expression of KHSRP via the PI3K-or NLRP3 pathway. Furthermore, this elevated expression of KHSRP is responsible for an increment in the liberation of pro-inflammatory markers in N2a cells. More exploration is needed to throw light on the pathway driving the KHSRP.
Areca catechu seeds and their extract/s are currently used to treat various ailments and infections including snakebites. The purpose of this investigation was to assess the inhibiting/neutralizing effect of ethyl acetate and aqueous ethanolic seed extracts of A. catechu on Bungarus caeruleus (krait) venom. The enzyme activities and their inhibition were evaluated using standard procedures (in vitro). In vivo studies were conducted using chick embryos and murine models. The extracts inhibited hyaluronidase and phospholipase A2 activities. Protease activity was neutralized by the aqueous ethanolic extract only. The IC50 value of aqueous ethanolic extract for hyaluronidase was 0.001 g/mL, while that for the ethyl acetate extract for phospholipase A2 was 0.006 g/mL. In addition, both the extracts neutralized the indirect hemolysis and fibrinogenolytic activity induced by B. caeruleus venom. The LD50 for the chick embryos was 4.9 µg/egg. The 50 and 100 µg aqueous ethanolic extracts neutralized the LD50 and the challenging dose (3LD50) of venom effectively in the chick embryo model. The LD50 of B. caeruleus venom in mice was 0.1927 µg/kg; the extract extended the survival time of the mice from 25 min to 30 and 35 min in 1:10 and 1:20 ((w/w) venom:extract) ratios, respectively. The extract also neutralized myotoxic activity. The A. catechu seed extract showed promising inhibitory properties against B. caeruleus venom. In this regard, academia and industries should work collaboratively to develop and formulate a cost-effective first-aid drug.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.