This paper proposes a novel feature extraction technique for speech recognition based on the principles of sparse coding. The idea is to express a spectro-temporal pattern of speech as a linear combination of an overcomplete set of basis functions such that the weights of the linear combination are sparse. These weights (features) are subsequently used for acoustic modeling. We learn a set of overcomplete basis functions (dictionary) from the training set by adopting a previously proposed algorithm which iteratively minimizes the reconstruction error and maximizes the sparsity of weights. Furthermore, features are derived using the learned basis functions by applying the well established principles of compressive sensing. Phoneme recognition experiments show that the proposed features outperform the conventional features in both clean and noisy conditions.
This article addresses the problem of how to select the optimal combination of sensors and how to determine their optimal placement in a surveillance region in order to meet the given performance requirements at a minimal cost for a multimedia surveillance system. We propose to solve this problem by obtaining a performance vector, with its elements representing the performances of subtasks, for a given input combination of sensors and their placement. Then we show that the optimal sensor selection problem can be converted into the form of Integer Linear Programming problem (ILP) by using a linear model for computing the optimal performance vector corresponding to a sensor combination. Optimal performance vector corresponding to a sensor combination refers to the performance vector corresponding to the optimal placement of a sensor combination. To demonstrate the utility of our technique, we design and build a surveillance system consisting of PTZ (Pan-Tilt-Zoom) cameras and active motion sensors for capturing faces. Finally, we show experimentally that optimal placement of sensors based on the design maximizes the system performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.