Application of growth factors at wound site has improved the efficiency and quality of healing. Basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) induce proliferation of various cells in wound healing. Delivery of growth factor from controlled release systems protect it from degradation and also result in sustained delivery of it at the site of injury. The goal of the study was to develop a Polyethylene glycol (PEG) cross-linked cotton-like chitosan scaffold (CS-PEG-H) by freeze-drying method and chemically conjugate heparin to the scaffold to which the growth factors can be electrostatically bound and evaluate its wound healing properties in vitro and in vivo. The growth factor containing scaffolds induced increased proliferation of HaCaT cells, increased neovascularization and collagen formation seen by H and E and Masson’s trichrome staining. Immunohistochemistry was performed using the Ki67 marker which increased proliferation of cells in growth factor containing scaffold treated group. Frequent dressing changes are a major deterrent to proper wound healing. Our system was found to release both VEGF and bFGF in a continuous manner and attained stability after 7 days. Thus our system can maintain therapeutic levels of growth factor at the wound bed thereby avoiding the need for daily applications and frequent dressing changes. Thus, it can be a promising candidate for wound healing.
BackgroundThe hydrogel based system is found to be rarely reported for the delivery of hydrophobic drug due to the incompatibility of hydrophilicity of the polymer network and the hydrophobicity of drug. This problem can be solved by preparing semi-interpenetrating network of cross-linked polymer for tuning the hydrophilicity so as to entrap the hydrophobic drugs. The current study is to develop a folic acid conjugated cross-linked pH sensitive, biocompatible polymeric hydrogel to achieve a site specific drug delivery. For that, we have synthesized a folic acid conjugated PEG cross-linked acrylic polymer (FA-CLAP) hydrogel and investigated its loading and release of curcumin. The formed polymer hydrogel was then conjugated with folic acid for the site specific delivery of curcumin to cancer cells and then further characterized and conducted the cell uptake and cytotoxicity studies on human cervical cancer cell lines (HeLa).ResultsIn this study, we synthesized folic acid conjugated cross-linked acrylic hydrogel for the delivery of hydrophobic drugs to the cancer site. Poly (ethyleneglycol) (PEG) diacrylate cross-linked acrylic polymer (PAA) was prepared via inverse emulsion polymerization technique and later conjugated it with folic acid (FA-CLAP). Hydrophobic drug curcumin is entrapped into it and investigated the entrapment efficiency. Characterization of synthesized hydogel was done by using Fourier Transform-Infrared spectroscopy (FT-IR), Transmission Electron Microscopy (TEM), Differential Scanning Calorimetry (DSC). Polymerization and folate conjugation was confirmed by FT-IR spectroscopy. The release kinetics of drug from the entrapped form was studied which showed initial burst release followed by sustained release due to swelling and increased cross-linking. In vitro cytotoxicity and cell uptake studies were conducted in human cervical cancer (HeLa) cell lines.ConclusionsResults showed that curcumin entrapped folate conjugated cross-linked acrylic polymer (FA-CLAP) hydrogel showed higher cellular uptake than the non folate conjugated form. So this can be suggested as a better delivery system for site specific release of hydrophobic cancer drugs.
Herein we report curcumin entrapped nanoparticles of PLGA–PEG copolymer which were conjugated with folic acid (PPF copolymer) for site specific targeting since many cancer cells exhibit external folic acid binding receptors.
Background: Treatment of wounds with the help of nanoparticles (NPs) is more effective and superior in comparison to traditional wound healing methods as it protects and sustains active drug release at the wound site thus enhancing the safety of the drug and reducing the possibility of side effects. The advantages of this method are the possibility of allowing a reduction in administered dose, limiting toxicity levels to the minimum, and increasing safety of topical delivery of the drug. Materials and methods: We report the synthesis of a novel poly (lactic-co-glycolic acid) (PLGA) NP-based multicargo delivery system for growth factors and antimicrobial peptide. Growth factors vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) were entrapped in PLGA NPs by solvent diffusion method and an antimicrobial peptide (K4) was conjugated to the NP by carbodiimide chemistry. The developed multiple cargo delivery systems with growth factors (VEGF and bFGF) and an antimicrobial peptide (K4) were investigated and optimized for potential wound healing. Results: The system showed a sustained release of growth factors and was evaluated for cytotoxicity by MTT and live/dead assay, which revealed that the bioactivity of the growth factor-entrapped NPs was higher than that of free growth factors, and it also induced enhanced cell proliferation in vitro. Conclusion: The development of a system for the codelivery of growth factors (VEGF and bFGF) and an antimicrobial peptide (K4) was investigated for potential wound healing application. The entrapment of growth factors with very high efficiency is an advantage in this method along with its sustained release from the nanoparticulate system, which will enhance the angiogenesis. Our system also displayed broad-spectrum antimicrobial activity against both gram-positive and gram-negative bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.