Atrial Fibrillation (A-Fib), Atrial Flutter (AFL) and Ventricular Fibrillation (V-Fib) are fatal cardiac abnormalities commonly affecting people in advanced age and have indication of life-threatening condition. To detect these abnormal rhythms, Electrocardiogram (ECG) signal is most commonly visualized as a significant clinical tool. Concealed non-linearities in the ECG signal can be clearly unraveled using Recurrence Quantification Analysis (RQA) technique. In this paper, RQA features are applied for classifying four classes of ECG beats namely Normal Sinus Rhythm (NSR), A-Fib, AFL and V-Fib using ensemble classifiers. The clinically significant ([Formula: see text]) features are ranked and fed independently to three classifiers viz. Decision Tree (DT), Random Forest (RAF) and Rotation Forest (ROF) ensemble methods to select the best classifier. The training and testing of the feature set is accomplished using 10-fold cross-validation strategy. The RQA coefficients using ROF provided an overall accuracy of 98.37% against 96.29% and 94.14% for the RAF and DT, respectively. The results achieved evidently ratify the superiority of ROF ensemble classifier in the diagnosis of A-Fib, AFL and V-Fib. Precision of four classes is measured using class-specific accuracy (%) and reliability of the performance is assessed using Cohen’s kappa statistic ([Formula: see text]). The developed approach can be used in therapeutic devices and help the physicians in automatic monitoring of fatal tachycardia rhythms.
Electrocardiogram (ECG) signal is a non-invasive method, used to diagnose the patients with cardiac abnormalities. The subjective evaluation of interval and amplitude of ECG by physician can be tedious, time consuming, and susceptible to observer bias. ECG signals are generated due to the excitation of many cardiac myocytes and hence resultant signals are non-linear in nature. These subtle changes can be well represented and discriminated in transform and non-linear domains. In this paper, performance of Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT) and Empirical Mode Decomposition (EMD) methods are compared for automated diagnosis of five classes namely Non-ectopic (N), Supraventricular ectopic (S), Ventricular ectopic (V), Fusion (F) and Unknown (U) beats. Six different approaches: (i) Principal Components (PCs) on DCT, (ii) Independent Components (ICs) on DCT, (iii) PCs on DWT, (iv) ICs on DWT, (v) PCs on EMD and (vi) ICs on EMD are employed in this work. Clinically significant features are selected using ANOVA test ([Formula: see text]) and fed to k-Nearest Neighbor (k-NN) classifier. We have obtained a classification accuracy of 99.77% using ICs on DWT method. Consistency of performance is evaluated using Cohen’s kappa statistic. Developed approach is robust, accurate and can be employed for mass diagnosis of cardiac healthcare.
Coronary Artery Disease (CAD) is the most leading Cardiovascular Disease (CVD), which results due to buildup of plaque inside the coronary arteries. The CAD and Normal Sinus Rhythm (NSR) heartbeats can be discriminated and diagnosed noninvasively using the standard tool Electrocardiogram (ECG). However, manual diagnosis of ECG is tiresome and time consuming task, due to complex nature and unseen nonlinearities of ECG. Hence an automated system plays a substantial role. In this study, CAD and NSR heartbeats are discriminated and diagnosed using Higher-Order Statistics (HOS) cumulants features. Further, the cumulants coefficients dimensionality reduced using Principal Components Analysis (PCA) and the medically significant features (p-value<;0.05) Principal Components (PCs) are subjected for classification using Random Forest (RAF) and Rotation Forest (ROF) ensemble classifiers. Proposed system is robust which helps in screening CAD risk factors and telemonitoring applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.