Aim: Image is the most powerful tool to analyze the information. Sometimes the captured image gets affected with blur and noise in the environment, which degrades the quality of the image. Image restoration is a technique in image processing where the degraded image can be restored or recovered to its nearest original image. Materials and Methods: In this research Lucy-Richardson algorithm is used for restoring blurred and noisy images using MATLAB software. And the proposed work is compared with Wiener filter, and the sample size for each group is 30. Results: The performance was compared based on three parameters, Power Signal to Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), Normalized Correlation (NC). High values of PSNR, SSIM and NC indicate the better performance of restoration algorithms. Lucy-Richardson provides a mean PSNR of 10.4086db, mean SSIM of 0.4173%, and NC of 0.7433% and Wiener filter provides a mean PSNR of 6.3979db, SSIM of 0.3016%, NC of 0.3276%. Conclusion: Based on the experimental results and statistical analysis using independent sample T test, image restoration using Lucy-Richardson algorithm significantly performs better than Wiener filter on restoring the degraded image with PSNR (P<0.001) and SSIM (P<0.001).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.