An electrical equivalent circuit is derived for the electrospray process. It is a series circuit which consists of the power supply, the electrochemical contact to the solution, the solution resistance (R(s)), a constant-current regulator which represents the processes of charge separation and charge transport in the gap between the spray needle aperture and the counter electrode, and charge neutralization at the counter electrode. A current i, established by the constant-current regulator flows throughout the entire circuit. Current-voltage curves are developed for each element in the circuit. From these it is shown that in the case where R(s) is negligible (the power supply is connected directly to a conducting needle) the shape of the current-voltage curve is dictated by the constant-current regulator established by the charge separation process, the gap, and the counter electrode. The solution resistance may be significant if a nonconducting needle is used so that the electrochemical contact to the solution is remote from the tip. Experiments with a nonconducting spray needle quantify the effect of the solution resistance on the current-voltage curve. Subtracting the iRs voltage from Vapp (power supply voltage) yields the current-voltage curve for the constant-current regulator. When iRs drop is a significant fraction of Vapp, the current-voltage curve of the constant-current regulator is changed substantially from the case when the solution resistance is negligible.
The electrodeposition mechanisms of poly(3,4-ethylenedithiathiophene) (PEDTT), which is the sulfur analogue of the well-known poly(3,4-ethylenedioxythiophene) (PEDOT), is investigated in acetonitrile solution by means of potentiostatic methods. By analyzing the current transients within electrocrystallization theory, we observe that the electrodeposition process is a combination of two mechanisms: progressive nucleation, followed by a diffusion-controlled three-dimensional growth (PN3DD); and an instantaneous nucleation, followed by a three-dimensional growth mechanism with charge transfer as the rate-limiting factor (IN3DC). This trend is contrary to PEDOT electrodeposition mechanisms. Cyclic voltametric measurements show important differences between PEDOT and PEDTT. The most unexpected result is that, although 3,4-ethylenedithiathiophene (EDTT) has a lower oxidation potential than 3,4-ethylenedioxythiophene (EDOT), the polymer PEDTT presents a higher oxidation potential and larger band gap than PEDOT. Density functional theory (DFT) calculations reveal important structural and electronic differences between some oligomers of EDTT and EDOT. We analyze these results in terms of the electron-donating effect of the S atom, the difference in the reactivity of the radical-cations of the monomers, and the difference in the geometries of the oligomers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.