Introduction. In this paper, we consider the operation principle, features, advantages, and disadvantages of compact domestic wastewater treatment plants designed by domestic manufacturers. The compact plants used until 2000 were designed to reduce such two indicators in the waste liquid as BOD and suspended solids. Since 2000, modern compact plants capable of reducing four indicators (BOD, suspended solids, nitrogen, and phosphorus) have been developed and installed in Russia. Methods. Biological methods of removing organic substances and nitrogen from the waste liquid are used at modern compact plants. Phosphorus is removed by using both biological and physical-and-chemical methods. The main issue in the operation of compact domestic wastewater treatment plants is the extremely nonuniform flow of wastewater; the coefficient of hourly nonuniformity can be 3.5 or higher. Another serious issue is the reduction in the waste liquid temperature in the cold period to critical values that hinder the biochemical oxidation of organic substances in aeration tanks. In permafrost areas (Yakutia), the influence of this factor can be observed even in the warm period. Results. Based on theoretical research and many years of experience in commissioning, we identified the consequences of design flaws and violations during operation for the stability and performance efficiency of compact plants of various modifications. Conclusion. The performed study made it possible to develop and recommend the optimal option for wastewater treatment, which allowed us to ensure that the indicators were brought to the maximum permissible concentrations of pollutants (suspended solids — 2–3 mg/l, BODult — 3–5 mg/l, ammonium nitrogen — 0.4 mg/l, nitrate nitrogen — 9 mg/l, phosphorus — 0.2 mg/l), established for discharge into fishing reservoirs.
The results of adjustment work, carried out at the local sewage treatment plants of food industry enterprise are presented in this paper. The enterprise has two sites, designed for the treatment of high and medium concentration effluents with a low pH value (3.5-5.5). Concentrated effluents are treated under anaerobic conditions in a compact installation consisting of a waste receiver, an anaerobic bioreactor, centrifuge thickener, centrifuge, flocculant preparation units and reagents. Wastes of medium concentration after neutralization are treated under aerobic conditions. The structure of this compact unit includes first-stage flotators, aerotanks operating for incomplete biological treatment, and second-stage flotators. Foam of the first stage and excess activated sludge of flotation devices of the second stage are dewatered on filter presses without treatment. The essence of the commissioning work consists in a detailed analysis of design solutions for both sites, study of the wastewater composition of high and medium concentration, systematization of operational data, which will allow operation to select the optimal operating mode of the main structures (anaerobic bioreactor and aeration tank). On the basis of the performed work, the optimal technological scheme of the unit for anaerobic digestion of high-concentration effluents has been developed and proposed. It is recommended to abandon the use of reagents, introduced before the flotation devices of the first and the second stages, due to an increase in the working pressure in the saturator for a compact installation designed for the treatment wastewater of medium concentration.
This scientific work is devoted to the results of the local treatment facilities’ work for food enterprises sewerage. The complex under consideration is intended for the anaerobic processing of whey, formed during fermented milk production. Whey is one of the specific organic substances, which main component is lactose (sucrose). It is converted under anaerobic conditions into lactic acid, which is a metabolic dead end. The capacity can be used as a homogenizing tank, obtained in this way. In the future, it is proposed to increase the homogenizer volume to 100 m3. It is recommended to use ammonium hydroxide or sulfate to ensure the required ratio between COD and biogenic element (nitrogen) in the loaded whey. Possible biogenic additives can be sewage sludge or slurry. The experience of adjustment was shown that slurry from cattle farms was quite simple, inexpensive and quite effective. Slurry can be injected in 3-4 m3 every 2-3 days. The stability of pH values in the bioreactor can be ensured by the correct placement of sensors for monitoring this indicator and by changing the method of alkali introduction. It is recommended to install pH control sensors at the bottom of the bioreactor, instead of whey loading pipeline. In order to provide for fractional injection of alkali, we should introduce part of the alkali at the homogenization stage, and part directly into the bioreactor. For an unimpeded build-up of anaerobic biomass, it is recommended to replace the centrifuge thickener operating with flocculant with the classic version of thickening in a compactor without flocculant adding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.