Future healthcare redesigns should support a wide variety of task sequences to deliver high-quality primary care. The development of tools such as electronic health records must be based on the realities of primary care visits if they are to successfully support a PCP's mental and physical work, resulting in effective, safe, and efficient primary care.
The response of porous titanium (Ti) and silicon (Si) powder mixtures with small, medium, and coarse particle morphologies is studied under high-pressure shock loading, employing postshock materials analysis as well as nanosecond, time-resolved pressure measurements. The objective of the work was to provide an experimental basis for development of models describing shock-induced solid-state chemistry. The time-resolved measurements of stress pulses obtained with piezoelectric polymer (poly-vinyl-di-flouride) pressure gauges provided extraordinary sensitivity for determination of rate-dependent shock processes. Both techniques showed clear evidence for shock-induced chemical reactions in medium-morphology powders, while fine and coarse powders showed no evidence for reaction. It was observed that the medium-morphology mixtures experience simultaneous plastic deformation of both Ti and Si particles. Fine morphology powders show particle agglomeration, while coarse Si powders undergo extensive fracture and entrapment within the plastically deformed Ti; such processes decrease the propensity for initiation of shock-induced reactions. The change of deformation mode between fracture and plastic deformation in Si powders of different morphologies is a particularly critical observation. Such a behavior reveals the overriding influence of the shock-induced, viscoplastic deformation and fracture response, which controls the mechanochemical nature of shock-induced solid-state chemistry. The present work in conjunction with our prior studies, demonstrates that the initiation of chemical reactions in shock compression of powders is controlled by solid-state mechanochemical processes, and cannot be qualitatively or quantitatively described by thermochemical models.
Background
Interventions designed to improve the delivery of primary care, including Patient-Centered Medical Homes and electronic health records, require an understanding of clinical workflow to be successfully implemented. However, there is a lack of tools to describe and study primary care physician workflow. We developed a comprehensive list of primary care physician tasks that occur during a face-to-face patient visit.
Methods
A validated list of tasks performed by primary care physicians during patient clinic visits was developed from a secondary data analysis of observation data from two studies evaluating primary care workflow. Thirty primary care physicians participated from a convenience sample of 17 internal medicine and family medicine clinics in Wisconsin and Iowa across rural and urban settings and community and academic settings.
Results
The final task list has 12 major tasks, 189 subtasks, and 191 total tasks. The major tasks are: Enter Room, Gather Information from Patient, Review Patient Information, Document Patient Information, Perform, Recommend / Discuss Treatment Options, Look Up, Order, Communicate, Print / Give Patient (advice, instructions), Appointment Wrap-up, and Leave Room. Additional subcodes note use of paper or EHR and the presence of a caregiver or medical student.
Conclusions
The task list presented here is a tool that will help clinics study their workflows so they can plan for changes that will take place because of EHR implementation and/or transformation to a patient centered medical home.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.