O-Linked glycans were isolated from human skim milk mucins or mucin-derived high-molecular weight glycopeptides and fractionated by anion exchange chromatography into neutral and acidic alditols. Major oligosaccharides contained in the acidic fraction were purified by high performance liquid chromatography and structurally characterized by a combination of fast atom bombardment mass spectrometry, methylation analysis and 500 MHz 1H-nuclear magnetic resonance spectroscopy. The structural aspects exhibited by these major species in the acidic fraction resemble those established previously for the neutral oligosaccharides from human skim milk mucins: 1) the size of the alditols varies from tri- to decasaccharides, 2) the core structure is of the ubiquitous type 2, 3) the backbone sequences are of the poly-N-acetyllactosamine type with a particular preponderance of linearly extended GlcNAc beta(1-3)Gal (major) or GlcNAc beta(1-6)Gal units (minor).
A phosphorylated, glycoprotein preparation has been obtained from orb webs of the araneid spider Argiope aurantia. This preparation probably contains proteins from more than one gland type, but resolution of these proteins has not yet been achieved. Nevertheless, a major component appears to be the adhesive glycoprotein(s) from the adhesive spiral. A product of the aggregate glands, this glycoprotein(s) occurs as discrete nodules along the core fibers of the adhesive spiral, within the viscid, aqueous droplets.The glycoprotein preparation has a high apparent molecular weight (> 200 kDa) and is polydisperse. The only monosaccharide constituent identified by gas-liquid chromatography or in lectin studies is N-acetylgalactosamine and this is at least primarily O-linked to threonine. By electron microscopy, linear, unbranched and apparently flexible filaments are observed. Phosphorylated serine and threonine residues are present in the preparation and glycine, proline and threonine together account for about 57 mole % of the preparation's amino acid content. Thus, in some, but not all, respects, this glycoprotein preparation is reminiscent of a secretory mucin.
We investigated the presence of factors in human milk that inhibit invasion of pathogenic bacteria. The effect of human milk fat globule membrane (HMFGM) components on adhesion of cloned S-fimbriated Escherichia coli to human buccal epithelial cells was analyzed. S fimbriae are a common feature of E. coli strains causing sepsis and meningitis in newborns and are bound to epithelia via sialyl-(a-2-3)galactoside structures. Human milk fat globules (HMFG) could be agglutinated by the above-mentioned bacteria. Agglutination could be inhibited by fetuin, human glycophorin, and al-acid glycoprotein. In addition, pretreatment of HMFG with Vibrio chokrae neuraminidase markedly reduced bacterium-induced agglutinations, indicating the involvement of neuraminic acid-containing glycoproteins. In contrast, lipid droplets of infant formula or artificial lipid emulsions (Intralipid) could not be agglutinated. HMFG were present in stools of breast-fed neonates as shown by indirect immunofluorescence staining with a monoclonal antibody directed against carbohydrate residues present on HMFGM. These HMFG could be agglutinated by bacteria. HMFG inhibited E. coli adhesion to buccal epithelial cells. To further characterize relevant E. coli binding structures, HMFGM components were separated by gel chromatography. The mucin fraction showed the most pronounced inhibitory effect on adhesion of S-fimbriated E. coli to human buccal epithelial cells. Our data suggest that HMFG inhibit bacterial adhesion in the entire intestine and thereby may provide protection against bacterial infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.