Unstable water level regime in the Kuibyshev Reservoir affects coastline formation as well as allocation and development of aquatic vegetation on the coast. These factors determine the composition and structure of biocenosis in shallow waters of the reservoir. The aim of this study was to reveal the patterns of formation, distribution and dynamics in phytoplankton communities in the shallow coastal waters on two reaches of the Kuibyshev Reservoir (Volga and Volga-Kama, Russia). These reaches differ by the extent of anthropogenic influence, protection from wind and waves and other environmental conditions. The research was done during the growing season of 2002 in the thickets of Typha angustifolia L. and Phragmites australis (Cav.) Trin. Ex Steud., as well as in the open water areas. Seasonal changes in the total biomass and abundance of phytoplankton in the thickets of macrophytes and in the open areas of the reservoir differed little. On the outer edge of the thickets, where intensive contact with the open water occurs, the highest algal species diversity and abundance were revealed, which is known as the ''edge effect''. Two peaks of phytoplankton development with maximums in June-July and late August were observed. By the end of the summer, a decrease in water level led to the autumn outbreak in volvocine algae abundance and biomass. The maintaining of an optimal water level in the reservoir is recommended for controlling of water ''blooming'' and thus maintaining high water quality.
THE PURPOSE. Identification of optimal regimes for autothermal and allothermic methods of gasification of plant biomass in terms of energy parameters of generator gases, as well as determination of environmental indicators during subsequent combustion of generator gases to obtain thermal energy.METHODS. When modeling gasification processes, a nonstoichiometric model was used, based on the assumption that a chemically reacting multicomponent mixture is in a state of thermodynamic and chemical equilibrium, which corresponds to the minimum value of the isobaric-isothermal potential. When modeling the combustion of generator gas in a mixture with air, a kinetic model of a perfectly mixed flow reactor was used and the detailed mechanism of chemical interaction for the C-H-O-N-S reacting system was taken into account. The calorific value of generator gas obtained by steam gasification and external supply of thermal energy is significantly higher than the calorific value of gas obtained by internal supply of thermal energy. However, the values of the energy potential and thermochemical efficiency are very close for both types of gasification.RESULTS. For plant biomass with a given averaged elemental composition, gasification conditions are determined that increase the degree of conversion of initial materials into generator gas. In particular, for the autothermal gasification method, the maximum calculated values of the energy potential of dry ash-free generator gas and thermochemical efficiency were obtained at an excess air coefficient α ≈ 0.32. For the allothermic gasification method, the maximum calculated values of the energy potential of the generator gas and the thermochemical efficiency correspond to the gasification temperature range T ≈ 1050 -1100 K and the mass fraction of the supplied steam gH2O ≈ 0.217. To ensure these conditions, it will be necessary to supply thermal energy through combustion of ≈ 37 wt. % generator gas. Generator gas produced by the allothermic method has higher energy performance, and the negative impact on the environment during its subsequent combustion is characterized by lower specific CO and CO2 emissions in terms of a ton of reference fuel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.