Objective: To assess the feasibility and robustness of an asynchronous and non-invasive EEG-based Brain-Computer Interface (BCI) for continuous mental control of a wheelchair. Methods: In experiment 1 two subjects were asked to mentally drive both a real and a simulated wheelchair from a starting point to a goal along a pre-specified path. Here we only report experiments with the simulated wheelchair for which we have extensive data in a complex environment that allows a sound analysis. Each subject participated in five experimental sessions, each consisting of 10 trials. The time elapsed between two consecutive experimental sessions was variable (from 1 h to 2 months) to assess the system robustness over time. The pre-specified path was divided into seven stretches to assess the system robustness in different contexts. To further assess the performance of the brain-actuated wheelchair, subject 1 participated in a second experiment consisting of 10 trials where he was asked to drive the simulated wheelchair following 10 different complex and random paths never tried before. Results: In experiment 1 the two subjects were able to reach 100% (subject 1) and 80% (subject 2) of the final goals along the pre-specified trajectory in their best sessions. Different performances were obtained over time and path stretches, what indicates that performance is time and context dependent. In experiment 2, subject 1 was able to reach the final goal in 80% of the trials. Conclusions: The results show that subjects can rapidly master our asynchronous EEG-based BCI to control a wheelchair. Also, they can autonomously operate the BCI over long periods of time without the need for adaptive algorithms externally tuned by a human operator to minimize the impact of EEG non-stationarities. This is possible because of two key components: first, the inclusion of a shared control system between the BCI system and the intelligent simulated wheelchair; second, the selection of stable user-specific EEG features that maximize the separability between the mental tasks. Significance: These results show the feasibility of continuously controlling complex robotics devices using an asynchronous and noninvasive BCI.
To be correctly mastered, brain-computer interfaces (BCIs) need an uninterrupted flow of feedback to the user. This feedback is usually delivered through the visual channel. Our aim was to explore the benefits of vibrotactile feedback during users' training and control of EEG-based BCI applications. A protocol for delivering vibrotactile feedback, including specific hardware and software arrangements, was specified. In three studies with 33 subjects (including 3 with spinal cord injury), we compared vibrotactile and visual feedback, addressing: (I) the feasibility of subjects' training to master their EEG rhythms using tactile feedback; (II) the compatibility of this form of feedback in presence of a visual distracter; (III) the performance in presence of a complex visual task on the same (visual) or different (tactile) sensory channel. The stimulation protocol we developed supports a general usage of the tactors; preliminary experimentations. All studies indicated that the vibrotactile channel can function as a valuable feedback modality with reliability comparable to the classical visual feedback. Advantages of using a vibrotactile feedback emerged when the visual channel was highly loaded by a complex task. In all experiments, vibrotactile feedback felt, after some training, more natural for both controls and SCI users.
Abstract-The use of shared control techniques has a profound impact on the performance of a robotic assistant controlled by human brain signals. However, this shared control usually provides assistance to the user in a constant and identical manner each time. Creating an adaptive level of assistance, thereby complementing the user's capabilities at any moment, would be more appropriate. The better the user can do by himself, the less assistance he receives from the shared control system; and vice versa. In order to do this, we need to be able to detect when and in what way the user needs assistance. An appropriate assisting behaviour would then be activated for the time the user requires help, thereby adapting the level of assistance to the specific situation. This paper presents such a system, helping a brain-computer interface (BCI) subject perform goal-directed navigation of a simulated wheelchair in an adaptive manner. Whenever the subject has more difficulties in driving the wheelchair, more assistance will be given. Experimental results of two subjects show that this adaptive shared control increases the task performance. Also, it shows that a subject with a lower BCI performance has more need for extra assistance in difficult situations, such as manoeuvring in a narrow corridor.
Controlling a robotic device by using human brain signals is an interesting and challenging task. The device may be complicated to control and the nonstationary nature of the brain signals provides for a rather unstable input. With the use of intelligent processing algorithms adapted to the task at hand, however, the performance can be increased. This paper introduces a shared control system that helps the subject in driving an intelligent wheelchair with a noninvasive brain interface. The subject's steering intentions are estimated from electroencephalogram (EEG) signals and passed through to the shared control system before being sent to the wheelchair motors. Experimental results show a possibility for significant improvement in the overall driving performance when using the shared control system compared to driving without it. These results have been obtained with 2 healthy subjects during their first day of training with the brain-actuated wheelchair.
Many elderly and physically impaired people experience difficulties when maneuvering a powered wheelchair. In order to ease maneuvering, powered wheelchairs have been equipped with sensors, additional computing power and intelligence by various research groups.This paper presents a Bayesian approach to maneuvering assistance for wheelchair driving, which can be adapted to a specific user. The proposed framework is able to model and estimate even complex user intents, i.e. wheelchair maneuvers that the driver has in mind. Furthermore, it explicitly takes the uncertainty on the user's intent into account. Besides during intent estimation, user-specific properties and uncertainty on the user's intent are incorporated when taking assistive actions, such that assistance is tailored to the user's driving skills. This decision making is modeled as a greedy Partially Observable Markov Decision Process (POMDP).Benefits of this approach are shown using experimental results in simulation and on our wheelchair platform Sharioto.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.